
Web Development
with Perl

Paul Fenwick
Jacinta Richardson

Kirrily Robert

Web Development with Perl
by Paul Fenwick, Jacinta Richardson, and Kirrily Robert

Copyright © 1999-2000 Netizen Pty Ltd
Copyright © 2000 Kirrily Robert
Copyright © 2001 Obsidian Consulting Group Pty Ltd
Copyright © 2001-2006 Perl Training Australia Pty Ltd
Copyright © 2001-2006 Paul Fenwick (pjf@perltraining.com.au)
Copyright © 2001-2006 Jacinta Richardson (jarich@perltraining.com.au)

Open Publications License 1.0

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0or later (the latest

version is presently available at http://www.opencontent.org/openpub/).

Distribution of this work or derivative of this work in any standard (paper) book form is prohibited unless prior permission is obtained from

the copyright holder.

This document includes content from theCGI Programming with Perltraining notes originally created by Kirrily Robert and Netizen Pty Ltd.

All additional material written by Paul Fenwick and JacintaRichardson.

Copies of the Netizen training manuals can be found at http://sourceforge.net/projects/spork

This training manual is maintained by Perl Training Australia.

This is version 1.2 of Perl Training Australia’s "Web Development with Perl" training manual.

Table of Contents
1. Introduction... 1

Introduction... 1
Course outline ... 1
Assumed knowledge ... 1

Web standards.. 1
What we don’t cover ... 1
Platform and version details.. 1
The course notes.. 2

2. What is CGI?... 3

In this chapter... ... 3
Clients and servers .. 3
HTTP basics.. 3
The CGI request .. 4
HTTP Methods.. 4

GET ... 5
HEAD.. 5
POST ... 5

HTTP Responses... 5
Chapter summary .. 6

3. Classical CGI programming.. 7

In this chapter... ... 7
CGI setup .. 7
Anatomy of a CGI program .. 7

Hello World ... 8
Exercises.. 8

The CGI.pm module ... 8
An alternative .. 8
Functional versus object-oriented.. 9

header() ... 9
start_html() and end_html() ..10

Exercise ...11
Debugging CGI programs...11

Failing gracefully with CGI::Carp...11
Fatal errors ...12
Warnings ..12

Exercises..12
Environment values ...13

Exercises ..13
Chapter summary ..13

4. HTML Forms .. 15

Introduction...15
HTML generation with CGI ...15
The form element ..16

GET vs POST..17
GET..17
POST..18

Form elements...18
Submit..18

Perl Training Australia (http://perltraining.com.au/) iii

Exercises..18
Text ..19
Exercises..19
Hidden ...19

Exercise..19
Password..19

Exercise..20
Checkbox...20

Checkbox groups ...20
Exercises ..21

Radio button groups...22
Select ...22

Exercises ..23
File upload...23

POST_MAX and DISABLE_UPLOADS ...24
Exercise..24

Pretty HTML...24
Chapter summary ..25

5. Accepting and processing form input ... 27

In this chapter... ...27
CGI Parameters ...27

All parameter names..27
Callingparam() in context ..28

Context issues ..28
Exercise ...28
Setting our own parameters ...29
Deleting parameters...29
Printing out parameters..29
Exercises..30
Debugging with theCGI.pm module’s offline mode..30
CGI.pm and input fields ..31
Exercises..31

Building a GET string ...31
File upload...31

Exercises..33
Chapter summary ..33

6. Security issues ... 35

In this chapter... ...35
The need for security...35

Potential security pitfalls ...35
Coding for security ..36
Taint checking..37

Turning on taint..37
Untainting your data ..38

Environment variables $ENV{PATH}..38
Names can have odd characters ..38
Exercises ...38
Cross-site scripting..39
Other forms might be submitted ...40
Privacy...40
In this chapter... ...41

iv Perl Training Australia (http://perltraining.com.au/)

7. Splitting HTML and code with HTML::Template.. 43

In this chapter... ...43
What is HTML::Template...43
The template explained ...44

Conventions...44
Simple template fields ...45

Exercises ..45
Non-web accessible templates...45
Escaping in template fields..46
Conditionals...46

Exercises ..47
Looping constructs ..47
Including files ..48

Using Template Objects ..48
Binding simple parameters..49
Binding complex parameters...50
Exercises..50
Associating other objects...50

Using CGI.pm with HTML::Template..51
Exercise ...52

Less templating with HTML::FillInForm...52
Exercise ...54

Chapter Summary ...54

8. Data validation.. 55

In this chapter... ...55
Client-side checking..55
Simple server-side checking..55

Exercise ...56
Group exercise...56

Data::FormValidator..56
Required and optional fields..56

Exercise..57
Dependencies...57

Exercise..57
Constraints...58

Adding constraints to our profile ...59
Checking for validity ...59

Exercises..59
More complex validation...59
Exercises..61
Error messages...61

Using our error messages...61
Exercises ..63

Validation and tainting...63
Exercise..63

Validation code and modules...63
Chapter Summary ...64

Perl Training Australia (http://perltraining.com.au/) v

9. Cookies and sessions ... 65

In this chapter... ...65
What are cookies? ...65
Uses for cookies ..65
Naming cookies...65
Cookie Security...66
Generating cookies with CGI::Cookie..66
Fetching cookies ...68

Exercises..69
Sessions...69
CGI::Session ...70

Saving submissions..71
Clearing session data ...71
Deleting sessions ...71
Exercises..72
Session expiry..72
Session storage ..73

Housekeeping...73
Sessions and HTML::Template ...74

Exercise..74
Chapter summary ..74

10. Introduction to HTML::Mason... 77

In this chapter... ...77
Problems with classical CGI ...77
What is Mason?...77
Mason vs traditional CGI ..78

A sample page ...78
Component Basics...78

Exercises..79
Calling components...79

The component root...80
Filename conventions..80
Exercises..81

Chapter Summary ...81

11. Component Arguments .. 83

In this chapter... ...83
Form processing..83

Multiple form values ...84
Exercises ..84

The %ARGS hash..84
Exercises ..85

Calling components with arguments...85
Exercises..87

Chapter summary ..87

12. Autohanders .. 89

In this chapter..89
Consistency ...89
The execution chain ..90
call_next ..90

Exercises..91

vi Perl Training Australia (http://perltraining.com.au/)

Methods...91
Exercises..92
Default methods...92

Exercise..93
Attributes...93
Changing autohandler inheritance ..94

Exercises..95
Autohandlers for access-control..95
Chapter summary ..95

13. Components in depth.. 97

In this chapter... ...97
Special Globals ...97

$m..97
$r..97

%init and %cleanup blocks ...97
%doc blocks ..98
Avoiding work with %once...99
Component internals: other named blocks.. 100
Escaping content ... 100

Exercises.. 101
Escaping by default ... 101
Creating your own escapes.. 101

Modules vs components.. 102
Returning a value from a component .. 102

Using cookies with Mason.. 103
Exercise ... 103

Chapter summary .. 103

14. dhandler - The default handler ... 105

In this chapter... ... 105
Finding dhandlers .. 105
Arguments ... 105
Not Found.. 105
Generating redirects... 105
An example dhandler... 106
Exercises.. 107

Virtual pages.. 107
Virtual quotations .. 107

Exercises .. 107
Caching pages.. 108

Exercise.. 108
Declining the request .. 108
Chapter summary .. 109

15. Caching .. 111

In this chapter... ... 111
General cache.. 111

Cache expiry.. 111
Exercises.. 112

Caching pages ... 112
Busy locks ... 113

Chapter summary .. 113

Perl Training Australia (http://perltraining.com.au/) vii

16. Filters ... 115

In this chapter... ... 115
%filter blocks .. 115
Component calls with content... 115

Exercise ... 115
Pre-filling forms in Mason .. 116

Exercises.. 116
Chapter summary .. 117

17. Session management... 119

In this chapter... ... 119
Sessions in Mason... 119

An example.. 119
Exercises.. 120

Session cleanup... 121
Chapter summary .. 121

18. Further Resources .. 123

Online Resources .. 123
Books .. 123
See Also .. 123

A. Mason Setup and Administration .. 125

Introduction... 125
Quick Setup... 125
Mason with the lid off ... 125

The Mason interpreter ... 125
The component root... 126
The data directory.. 126

Mason wrappers .. 126
Using Mason through CGI scripts .. 128
Using Mason in stand-alone scripts .. 129
Conclusion .. 129

viii Perl Training Australia (http://perltraining.com.au/)

List of Figures
2-1. A typical HTTP connection... 3
2-2. A typical CGI connection.. 4

Perl Training Australia (http://perltraining.com.au/) ix

x Perl Training Australia (http://perltraining.com.au/)

Chapter 1. Introduction

Introduction
Welcome to Perl Training Australia’sWeb Development with Perltraining course. This is a two-day
course in which you will learn how to write dynamic, interactive web applications using the Perl
programming language.

Course outline

• Day 1 -- Classical CGI programming

• Day 2 -- Introduction to HTML::Mason

Assumed knowledge
This course assumes that you already know HTML. You don’t need to be an HTML genius, but you
need to know what HTML tags look like, and how they work.

This course also assumes a comfortable understanding of Perl; variable types, operators and
functions, conditional constructs, subroutines, regularexpressions, objects and references.

Web standards
While this is not a course on web standards, it is highly recommended that you follow them
whenever possible. The examples in this book will use or assume the use of Cascading Style Sheets
(CSS) for presentation. CSS allows the HTML to represent thelogical construction of a document,
and can make things significantly simpler in teaching, development, and production.

What we don’t cover
This course does not cover any client-side programming technologies, such as JavaScript. Some
parts of the course may make reference to JavaScript, or use it demonstrate particular concepts, but
these are for illustrative purposes rather than being part of the core course material.

Platform and version details
This module is taught using a Unix or Unix-like operating system. Most of what is covered will work
equally well on other operating systems. Your instructor will inform you throughout the course of
any areas which differ.

Perl Training Australia (http://perltraining.com.au/)
1

Chapter 1. Introduction

All of Perl Training Australia’s training courses use Perl 5, the most recent major release of the Perl
language. At the time of writing the most recent stable release of Perl is 5.8.8.

The course notes
These course notes contain material which will guide you through the topics listed above, as well as
appendices containing other useful information.

The following typographic conventions are used in these notes:

System commands appear inthis typeface

Literal text which you should type in to the command line or editor appears asmonospaced font.

Keystrokes which you should type appear like this:ENTER. Combinations of keys appear like this:
CTRL-D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own specific values appear
like this

Notes and tips appear offset from the text like this.

Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

Notes marked with "Readme" are pointers to more information which can be found in your
textbook or in online documentation such as manual pages or websites.

Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. What is CGI?

In this chapter...
CGI is theCommon Gateway Interface, a standard for programs to interface with HTTP (web)
servers. CGI allows the HTTP server to run an executable program or script in response to a user
request, and generate output on the fly. This allows web developers to create dynamic and interactive
web pages.

CGI programs can be written in any language. Perl is a very common language for CGI programming
as it is largely platform independent and the language’s features make it very easy to write powerful
applications. However, CGI programs are also written in C, Java, Python, PHP and shell.

It is important to remember that CGI is not a language in itself. CGI is merely a type of program
which can be written in any language.

Clients and servers
A web server is a computer that manages and shares web based applications accessible anytime from
any computer connected to the Internet. For example the training server we’ll be using today is a
web server for our purposes.

A client is a computer that’s utilising a web server. For example, the web browsers on your
machines, which you will be using to access content from our training server, are clients.

This course focuses in using Perl for server-side applications. We can use Perl to generate dynamic
content, process forms, and other useful tasks.

HTTP basics
HTTP stands for HyperText Transfer Protocol, and is the protocol used for transferring hypertext
documents such as HTML pages on the World Wide Web.

To understand how CGI works, you need some understanding of how HTTP works.

Figure 2-1. A typical HTTP connection

User Agent
(browser) File SystemHTTP Server

Server Machine

File Lookup (2)

File Contents

Content (4)

Headers (3)

Page Request (1)

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. What is CGI?

A simple HTTP transaction, such as a request for a static HTMLpage, works as follows:

1. The user agent (a web browser) connects to the port upon which the HTTP server is running
(usually port 80). The user agent sends a request such asGET /index.html. The user agent may
also send other headers.

2. The HTTP server receives the request and finds the requested file in its filesystem.

3. The HTTP server looks at the file content and generates HTTPheaders to tell the client what
kind of file it is sending, for example, text or image.

4. The HTTP server then sends the file contents to the client and closes the connection.

The CGI request
CGI requests different from HTTP requests as CGI scripts canreturn any kind of output; text,
images, music; even from the same program! Thus for CGI programs, the server cannot guess the
headers from looking at the file contents. Instead everything must be done by the CGI program.

Figure 2-2. A typical CGI connection

User Agent
(browser)

HTTP Server File SystemCGI Program

Server Machine

(3)

Headers (4)

Content (5)
Content (6)

Page Request (1)

Headers (6)

Executes Script (2)

1. The user agent connects to the port upon which the HTTP server is running. It sends a page
request and any other headers.

2. The HTTP server receives the request and executes the CGI program.

3. The CGI program runs, fetching from or writing to the file system as required. It may also
contact other machines or services.

4. The program produces the appropriate HTTP headers and sends them to the HTTP server.

5. The program produces the content and sends that to the HTTPserver.

6. The HTTP server forwards the headers and content to the client and closes the connection.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. What is CGI?

HTTP Methods
There are a number of ways of requesting data from a server. The most common of these are GET,
POST and HEAD, which we’ll briefly describe below. We’ll cover GET and POST more during the
rest of the course.

The indented text in each of the below sections is quoted fromRFC 2616 Fielding, et al.
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html).

GET

The GET method means retrieve whatever information (in the form of an entity) is identified by the
Request-URI. If the Request-URI refers to a data-producingprocess, it is the produced data which shall be
returned as the entity in the response and not the source textof the process, unless that text happens to be
the output of the process.

Most web page requests are GET requests, such as:

http://www.example.com/index.html

GET requests can also submit data to CGI programs as follows:

http://www.example.com/script.cgi?name=Ben&age=29

HEAD

The HEAD method is identical to GET except that the servermust notreturn a message-body in the
response. The metainformation contained in the HTTP headers in response to a HEAD requestshouldbe
identical to the information sent in response to a GET request. This method can be used for obtaining
metainformation about the entity implied by the request without transferring the entity-body itself.

HEAD requests are rarely sent by users, but are often sent by proxies to check whether the content
has changed before fetching the full page.

POST

The POST method is used to request that the origin server accept the entity enclosed in the request as a
new subordinate of the resource identified by the Request-URI in the Request-Line. POST is designed to
allow a uniform method to cover the following functions:

• Annotation of an existing resource

• Posting a message to a bulletin board, newsgroup, mailing list, or similar group of articles

• Providing data, such as the result of submitting a form, to a data-handling process

• Extending a database through an append operation.

Most form submissions on webpages use the POST method.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 2. What is CGI?

HTTP Responses
From the user point of view, if a request has been successful,they receive their data, anything else
means the request wasn’t successful. On the protocol level there are a number of possible responses.
We mention a few of the common ones below:

• 200 -- OK

• 301 -- Moved Permanently

• 302 -- (Found) Moved Temporarily

• 404 -- Not Found

• 500 -- Internal Server Error

Clients want to receive a response of 200, although 301 and 302 are okay (particularly if they include
a redirect to the new location). You’ll probably see a lot of 500 responses during the day, and we’ll
play a little with the other responses tomorrow.

Chapter summary

• CGI stands for Common Gateway Interface.

• HTTP stands for Hypertext Transfer Protocol. This is the protocol used for transferring documents
and other files via the World Wide Web.

• HTTP clients (web browsers) send requests to HTTP (web) servers, which are answered with
HTTP responses.

• All HTTP responses consist of headers and content.

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

In this chapter...
For a long time Perl was the de-facto language for developingweb applications. TheCommon
Gateway Interface, or more commonly justCGI, is a specification on how input can be accepted and
decoded from browsers.

Perl has aCGI module that is part of the standard distribution. It provides a the ability to parse CGI
arguments and data, as well as features for generating HTML.The module is sometimes referred to
asCGI.pm to provide a distinction between the module and the specification.

This chapter covers how to write CGI programs in Perl.

CGI setup
The training server has been set up so that each user has theirown web space underneath their home
directory. All files which will be accessible via the web should be placed in the directory namedwww.

The directoryusername/www/ on the training server maps to the URLhttp://hostname/username/
on the web.

On many servers CGI programs need to be placed in a special directory (traditionally named
cgi-bin), have a particular extension (commonly.cgi), have particular permission bits set, or a
combination of any of these. These restrictions exist to ensure that non-CGI programs do not get
executed by accident, and to ensure that CGI programs are executed, rather than just displaying their
source-code.

Your CGI directory appears under yourwww directory The directoryusername/www/cgi-bin/ on the
training server maps to the URLhttp://hostname/username/cgi-bin/ on the web.

If you were setting this up for yourself, you would need to ensure that:

• Your html and cgi-bin directories are world executable.

• All of your .html files are world readable.

• Your CGI scripts are world readable and executable.

Anatomy of a CGI program
CGI programs do not interact with the client directly, instead they receive information from the
web-server and pass back appropriate responses.

CGI programs are expected to produce output to their standard output (STDOUT). This output
includes headers (such as content type and cookies), and theactual document itself. The headers and
content are divided by a single blank line.

The following is an example of a simple CGI program that displays the current time:

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 3. Classical CGI programming

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
print scalar localtime;

Hello World
The following HTML provides a simple "Hello World" message.

<html>
<head>
<title>Hello World</title>
</head>
<body>
<p>
Hello World
</p>
</body>
</html>

As this document is entirely HTML, this page will remain static. No matter how often we visit it, it
will say the same thing. The only way of changing its contentsis to change the file directly.

CGI programs, on the other hand, are able to generate data which depends on the time of day, a
random number and what you’ve put in yourshopping cart.

Exercises

1. Write atext/plain CGI program which prints out "Hello World!". Use thelocaltime example
above to get you started.

2. Change your Hello World program to instead generate HTML,as shown above. Your header
should now sayContent-type: text/html\n\n.

3. Change your Hello World message to also print "You are visitor number X" where X is a
random number.

You can get a random integer between 0 and 10,000 with:int(rand(10_000)).

The CGI.pm module
Perl has a standard module calledCGI.pm that simplifies web development. While many new
technologies and techniques have been created sinceCGI.pm was developed, it can still be found in a
very large amount of deployed code, and can be used when installing more modern tools is not an
option.

There are still a huge number of traditional CGI programs that exist in production environments.
CGI.pm programs will work on practically any system with a Perl installation, and this portability is
partially responsible for their popularity.

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

An alternative
CGI.pm was originally written by Lincoln Stein in 1995 and has been actively maintained since. It is
a monolith of code which does all of the following and more:

• Dealing with the CGI protocol, including parameter parsing

• Creating and managing cookies

• Generating HTML

• HTML and URI character escaping

With all of this functionality, much of which is not used by a typical program,CGI.pm could be very
slow. Instead, it makes use of a number of very clever tricks to make it fast. Still, some alternative
modules have been written to make it even faster.

One of the best known of these alternatives isCGI::Simple. It provides an object oriented interface
like CGI.pm’s and is designed as a drop in replacement forCGI.pm. CGI::Simple only handles the
CGI aspect of theCGI.pm module and does not include the HTML generation. However it is written
to be more maintainable (the code isstrict andwarnings compliant) and faster.

Functional versus object-oriented
CGI provides both a functional and object-oriented interface. Throughout these notes we’ll be using
theobject-orientedstyle, as it reduces the chance of conflicts between CGI subroutines, our own
subroutines, and those built-in to Perl. It is also the stylemost commonly seen in examples in the
CGI.pm documentation.

The following two examples demonstrate the difference between the styles. While the
object-oriented interface may seem a little more typing at first, it can save a significant amount of
time in debugging later on.

Functional interface

use CGI qw(:standard);

print header(),
start_html(),
p("Hello World"),
end_html();

Object oriented interface (recommended)

use CGI;
my $cgi = CGI->new;

print $cgi->header(),
$cgi->start_html(),
$cgi->p("Hello World"),
$cgi->end_html();

In these cases we’re also showing off CGI’s HTML generation abilities.

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 3. Classical CGI programming

header()
The first piece of data we must send to the client is the header.This contains information regarding
what kind of data is to follow (image, text, html, encrypted)and any browser directives such as
cookie information, language, expiration date and cachingsuggestions.

To print a standard header we can just write:

print $cgi->header();

This will generate something like:

Content-Type: text/html; charset=ISO-8859-1

which is usually all that is required for CGI programs. Theheader function can take a number of
arguments including non-standard ones which we might want to throw in:

print $query->header(
-type=>’text/html’,
-expires=>’+3d’,
-cookie=>$cookie,

);

The expires parameter tells the client to cache the page result and not to re-invoke the program the
next time the user requests that data. This is not a guaranteethat the data will not be requested as
both the client and the user are able to ignore this instruction.

start_html() and end_html()
Almost every invocation of your CGI program will result in a need to print out the start HTML tag, a
header block, and your body tags. Fortunately,CGI.pm’s start_html method creates the top of your
page, and can be used to reliably create much of the optional information which controls your page’s
appearance and behaviour.

A simple header should include the page’s title, for example:

print $cgi->start_html(
-title => "Hello World",

)

which produces:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head><title>Hello World</title>
</head><body>

We can pass in other parameters to define the page author, document base, frame targets, meta
information, style-sheets, background colour and links. Readperldoc CGI for more information.

On the other hand, theend_html method finishes the page. This involves closing the body tag,and
the html tag:

print $cgi->end_html();

</body></html>

10 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

If you don’t want to generate XHTML, you can use CGI’s -no_xhtml pragma, like this:

use CGI qw(-no_xhtml);

You can also pass a -dtd and many other parameters to start_html. For more information, read
perldoc CGI.pm under the section CREATING THE HTML DOCUMENT HEADER.

Exercise

1. Alter your previous hello world program to use CGI’sheader, start_html andend_html
methods.

Debugging CGI programs
When writing CGI programs, there are many problems which mayaffect their execution. Since these
will not always be easily understood by examining the web browser output, there are other ways to
determine what’s going wrong.

If there seems to be a problem first try the following steps:

1. Check that your program compiles by usingperl -c

2. Check the permissions on your cgi program. If it is not world executable then it won’t work.

3. Run your program on the command line. If your program waitsfor input, that’s your opportunity
to pass in parameters. For the moment, pressCTRL-d.

4. If your program runs fine on the command line but still does not output to the browser, make
sure that you have not forgotten to print the header before any other output.

5. Check the HTML source that you’re printing. Make sure thatyou’ve closed any tables you’ve
opened and not made any obvious HTML errors.

6. Check the web server’s log files. The location of these varyfrom system to system. On our
system they’re in/var/log/apache/.

Failing gracefully with CGI::Carp

You can read all about CGI::Carp by reading perldoc CGI::Carp . It’s also covered briefly on
page 878 of the Camel book (but not in 2nd Ed.).

CGI scripts often leave warning messages in the error logs without time stamps or script name. This
can make it much harder to identify which program caused the error, and how long ago it occurred.
Fortunately we can use Perl’sCGI::Carp module to add both of these pieces of information:

use CGI::Carp;

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 3. Classical CGI programming

We can also make our errors go to a separate log, by using thecarpout subroutine. This needs to be
done inside aBEGIN block in order to catch compiler errors as well as ones which occur at the
interpretation stage.

BEGIN {
use CGI::Carp qw(carpout);
open(my $log, ">>", "cgi-logs/mycgi-log")

or die("Unable to open mycgi-log: $!\n");
carpout($log);

}

You will need to ensure that the user id that your program is running under has the permissions to
access the directory and file that you provide.

Fatal errors

One of the most common uses ofCGI::Carp is to cause any fatal errors to have their error messages
and diagnostic information output directly to the browser:

use CGI::Carp qw(fatalsToBrowser);

die ’Some disaster!’; # This will be printed to the browser

CGI::Carp is an excellent tool to use during debugging. However, it is not a good idea to leave it
enabled with fatalsToBrowser in production code. There are two reasons for this. The first is that
errors should be handled properly by a default error page or something equivalent. The second,
and more important, is that fatalsToBrowser provides a lot of information about your script’s
internals. This information is not going to help your average user to know what they did wrong,
but it may help malicious users discover ways they can exploit your code.

Warnings

Just asfatalsToBrowser allows us to see Perl’s fatal errors, we can also useCGI::Carp to show us
Perl’s warnings. These are printed in our HTML source as HTMLcomments so that they don’t
interfere with our normal output.

use CGI::Carp qw(warningsToBrowser);
warningsToBrowser(1);

warn ’Some warning’; # This will be printed in HTML comments

As these are only useful after we have printed out our CGI headers,CGI::Carp will buffer our
warnings until after we have calledwarningsToBrowser(1), which tellsCGI::Carp that it is safe to
now print warnings in HTML comments. We can also turn buffering back on if we are generating
HTML structures which don’t allow comments internally:warningsToBrowser(0)

We can combine bothfatalsToBrowser andwarningsToBrowser to turn them both on:

use CGI::Carp qw(fatalsToBrowser warningsToBrowser);

12 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

Exercises

1. Edit yourhello.cgi program so that it dies with an error before the CGI headers are printed.
What does the browser display?

2. AddfatalsToBrowser to your program and make sure that you now receive that error now
printed to the browser.

3. Usewarn to print a warning during your program’s execution. Turn onwarningsToBrowser and
ensure that it appears in your program’s comments.

Environment values
The CGI specification makes available a large amount of additional information including what type
of browser is accessing our server, and its IP address, as well as our server’s name and which virtual
host is being accessed. This information is placed into environment variables which we can access
throughCGI.pm’s methods.

user_agent()

ReturnsHTTP_USER_AGENT. If provided with an argument, it will use that for pattern matching
allowing you to writeuser_agent("netscape") to determine whether the user agent string
includes the word "netscape".

remote_host()

The remote host name or IP address.

server_name()

The name of the server the program is running on. Very useful when running a testing site and a
production site, but keeping identical copies of code.

virtual_host()

Name of host to which the browser attempted to connect, if virtual hosts are in use.

Exercises

1. Edit your Hello World program to print out the user agent and ip address of the visitor.

Try calling your program with different browsers.

Chapter summary

• CGI programs produce output to their STDOUT, this must include both the headers and the
content.

• TheCGI.pm module can be used to produce both the headers and the content.

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 3. Classical CGI programming

• TheCGI.pm module can be used in both a functional and object oriented fashion.

14 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

Introduction
Forms are a common and often integral part of any web application. In simple terms, a form is an
interface whereby users can enter or modify data, and then submit that data to a server for processing.

HTML generation with CGI
In general, it is better to separate HTML and code into separate files. This allows HTML designers to
alter the page structure without having all this ugly code get in the way! We’ll talk about how to use
templating systems to achieve this in a later chapter.

The examples in the previous chapter work equally well forCGI.pm andCGI::Simple and the two
modules are interchangeable. However,CGI.pm also supports basic HTML generation.

CGI.pm has methods for all the standard HTML tags. So, for example ifwe wanted to print out an
anchor:

Further information about Perl Training Australia.

we’d type:

use CGI;
my $cgi = CGI->new();

print $cgi->a(
{-href => "http://www.perltraining.com.au/"},
"Further information about Perl Training Australia."

);

We can also create start tags, and end tags directly, in orderto generate data to go between them:

use CGI;
my $cgi = CGI->new();

print $cgi->start_ul;
foreach my $name (qw/Jacob Jeremy Jacinta Jenni Jack/)
{

print $cgi->li($name);
}
print $cgi->end_ul;

This HTML generation is most useful when we’re creating formelements, particularly when a lot of
our data is coming from a file or database. This is because it allows us to use our existing data
structures to easily generate the HTML we need.

Perl Training Australia (http://perltraining.com.au/) 15

Chapter 4. HTML Forms

CGI.pm methods typically take two arguments; a hash reference of options and the data. In the
cases where you are not passing any data in (such as start_html), you can pass in key/value
pairs instead. So the following are equivalent:

print $cgi->start_html({
-title => "Hello World"

})

print $cgi->start_html(
-title => "Hello World"

)

In the cases where you are happy to use the default options, you can leave off the first argument
and just provide your data:

print $cgi->li($name);

It is a mistake to provide both options and data, without including the options in a hash
reference:

Won’t work as desired:
print $cgi->li(-class => $class, $name);

Should be:
print $cgi->li({ -class => $class }, $name);

Some methods also allow you to use short cuts, so the below example is also equivalent to the
previous start_html examples:

print $cgi->start_html("Hello World");

The form element
Theform element is a block level element, which means that the browser will present it on a new
line, as it does with headings and paragraphs. It is also a container, which means that other elements
can appear inside the form.

It’s attributes include:

method

How the form should be submitted to the web server. These include GET and POST, which
we’ll cover in a moment.

action

A relative or absolute URL for the CGI program which the form information should be
submitted to.

enctype

The form’s encoding type. This should beapplication/x-www-form-urlencode for standard
forms andmultipart/form-data for forms with file-uploads.

Creating a form using CGI.pm is easy.

16 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

print $cgi->start_form({
-action => "myscript.cgi",
-method => "POST",

});

print form internals.

print $cgi->end_form();

If we don’t specify our method, then CGI.pm will assume we intended POST. Likewise if we don’t
specify an action, it will assume we intend for the submission to come back to the current CGI script.
CGI provides an encoding type of (application/x-www-form-urlencode) by default, so we can
leave that off too. Assuming that our program is calledmyscript.cgi, we can reduce the above to:

print $cgi->start_form();

print form internals.

print $cgi->end_form();

Multi-part forms (which allow us to upload files) use a different method.

print $cgi->start_multipart_form({
-action => "myscript.cgi",
-method => "POST",
-enctype => "multipart/form-data",

});

print form internals.

print $cgi->end_form();

GET vs POST
There are two commonly used methods for form submission. These methods are called GET and
POST, representing the underlying action taken in the HTTP protocol. It is worth briefly examining
the difference between these two methods for form submissions, and the advantages and
disadvantages of each.

GET

A ’GET’ form submission operates by taking the form data and encoding it into the URL. As an
example, let’s pretend that our form asks for the user’s favourite colour and food:

<form method="get" action="http://example.com/favourites.html">
<p>

What is your favourite colour?
<input type="text" name="colour" />

What is your favourite food?
<input type="text" name="food" />

<input type="submit" />

</p>
</form>

If the user enters the colour ’red’ and the food ’apples’, this will generate a request to
http://example.com/favourites.html?colour=red&food=apples.

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 4. HTML Forms

The primary advantage of GET and URL encoding is that it results in URLs that can be easily
bookmarked. It’s also easy for humans to modify the URL, which can make ad-hoc testing simpler.
GET encoding should never be used for forms involving passwords, as the resulting URL including
the password may appear in the browser history, cache logs, and server logs.

GET requests are poorly suited for large forms, and cannot beused for file uploads.

POST

A ’POST’ form submission operates by composing the form datainto the body of the request
submitted to the server. The data can be of any length, and fileuploads and other binary objects can
be handled cleanly. POST operations do not alter the URL in any way.

POST operations do not result in pages that are easy to bookmark, but at the same time they do not
have problems with passwords ending up in logs and history files.

Form elements
There are a large number of possible form elements we can use.We’ll cover some of these here
briefly.

Submit
The submit element creates a button which, when pressed, submits the form to the server.

<input type="submit" name="personal_data" value="Finished!" />

We can create these with CGI.pm with:

print $cgi->submit({
-name => "personal_data",
-value => "Finished!",

});

Exercises
With this and the later exercises you will develop a form which takes a number of different kinds of
inputs.

1. Write a program which creates a form which will POST the content back to itself.

2. CGI has a method calledDump which prints out any values passed into a script through a GETor
POST submission. We can call this as follows:

print $cgi->Dump();

UseDump to print the values passed into your form.

3. Test that your program works. We’ll be adding form elements to make use ofDump as we work
through this chapter.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

4. Add a submit button to your form. Traditionally these appear at the end of the form.

Run your program and see how it goes.

Text
The text input field.

<input type="text" name="email_address" value="bob@example.com" />

We can create this with CGI.pm by either of the following:

print $cgi->textfield({
-name => ’email_address’,
-value => ’bob@example.com’,

});

print $cgi->input({
-type => ’text’,
-name => ’email_address’,
-value => ’bob@example.com’,

});

Exercises
Add a text field to your form. Type something into the box and submit your form.

Hidden
Hidden fields allow us to pass data around without having to display it to the user. Using hidden
doesn’t mean that the usercannotsee the data -- as it’s there in the source -- but it means that the
user doesn’t have to worry about it.

Hidden fields should always have a value defined.

<input type="hidden" name="stage" value="3" />

We can create this with CGI.pm by either of the following:

print $cgi->hidden({
-name => "stage",
-value => 3,

});

print $cgi->input({
-type => "hidden",
-name => "stage",
-value => 3,

});

Exercise

Add a hidden field to your form. Give it a value and submit your form. What happens?

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 4. HTML Forms

Password
Password fields allow the user to enter a password without fear of on-lookers learning it. Values
entered into a password field are obscured with asterisk characters (*).

<input type="password" name="user_password" />

We can create this with CGI.pm by either of the following:

print $cgi->password_field({
-name => "user_password"

});

print $cgi->input({
-type => "password",
-name => "user_password",

});

Just because the information is obscured on the screen doesn’t mean that it is secure. Under a
regular HTTP request, all fields (including password fields) are passed to the server in plain text.
This allows anyone with a packet-sniffer to read what data was entered.

Likewise, setting a password value when generating HTML will be visible to anyone who looks at
the HTML source. If keeping passwords secure is important, make sure you are using
secure-HTTP (HTTPS).

Exercise

Add a password field to your form. Enter something into the boxand submit the form.

Checkbox
Checkboxes allow users to set a value to on or off. Used singlythese might be used to opt-in to a
mailing list, or request that an email copy of an invoice be sent. If the checkbox should appear as
"on", we set the "checked" parameter:

<input type="checkbox" name="send_email" value="yes" checked="checked" />
Email copy of itinerary?

We can create this with CGI.pm with:

print $cgi->checkbox({
-name => "send_email",
-value => "yes",
-checked => 1,
-label => ’Email copy of itinerary?’

});

If the user selects the checkbox, it will appear in the form parameters with the specified name and
value. If the checkbox is not selected, then there will be no parameter of that name, rather than the
name and a false value.

20 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

Checkbox groups

Another common use of checkboxes is to create a group of them.These receive the same input
name, but have different values. We can tell which (if any) values the user selected, by looking at the
list of values given to us under that input name.

<input type="checkbox" name="interests" value="bowl" />Bowling

<input type="checkbox" name="interests" value="fish" />Fishing

<input type="checkbox" name="interests" value="climb" />Climbing

<input type="checkbox" name="interests" value="ski" />Skiing

<input type="checkbox" name="interests" value="dive" />Diving

Rather than create these individually we can use CGI.pm to doit all at once:

print $cgi->checkbox_group({
-name => "interests",
-values => [qw(bowl fish climb ski dive)],
-labels => {

bowl => "Bowling",
fish => "Fishing",
climb => "Climbing",
ski => "Skiing",
dive => "Diving",

},
-default => [],
-linebreak => 1,

});

Let’s look at that a little. Specifying a hash of labels let’sus tell CGI.pm what text to put beside each
checkbox, specifying an array of values, tells CGI.pm the order in which the checkboxes should be
placed. We can leave the labels hash empty if the values and labels are the same.

Note that our values, defaults and labels are all passed as anonymous references. If we have access to
arrays and hashes with this information in it (perhaps because we’ve pulled it from a file or
database), we can pass in references to those instead:

my %labels = (
bowl => "Bowling",
fish => "Fishing",
climb => "Climbing",
ski => "Skiing",
dive => "Diving",

);
my @values = qw(bowl fish climb ski dive);
my @defaults = qw();

print $cgi->checkbox_group({
-name => "interests",
-values => \@values,
-labels => \%labels,
-default => \@defaults,
-linebreak => 1,

});

Thelinebreak option, if true, puts a
 tag after each checkbox.

Perl Training Australia (http://perltraining.com.au/) 21

Chapter 4. HTML Forms

Exercises

1. Add a checkbox field to your form. Try submitting your form with it checked and unchecked,
what is the result?

2. Add a group of checkboxes to your form. Try submitting yourform with none, some and all of
the boxes checked. What is the result?

Radio button groups
Radio buttons allow users to set one value in a group to on or off. Although it is possible in HTML to
have a single radio button, the correct equivalent is a stand-alone checkbox.

<input type="radio" name="age_group" value="10" />Under 10

<input type="radio" name="age_group" value="20" />11 to 20

<input type="radio" name="age_group" value="30" />21 to 30

<input type="radio" name="age_group" value="40" />31 to 40

<input type="radio" name="age_group" value="50" />40 and over

Logically, a group of radio buttons is equivalent to a singlevalue select list (such as that generated in
a pop-up list). It is often a good idea to use radio buttons forvery small sets of options (such as
binary decisions) and when seeing all of the options is important. With a larger set of options, using
a pop-up list will improve the usability of your website.

Creating a radio group is almost identical to creating a checkbox group:

print $cgi->radio_group(
-name => "age_group",
-values => [10, 20, 30, 40, 50],
-default => 0,
-linebreak => 1,
-labels => {

10 => "Under 10",
20 => "11 to 20",
30 => "21 to 30",
40 => "31 to 40",
50 => "40 and over",

},
);

Setting the default value to a non-existent value ensures that no value will be originally selected.

Select
There are two types of select lists in HTML. One is often referred to as a "pop-up list" as their
implementation typically has the list options pop-up over the browser window when you wish to
scroll through them. These allow you to select one value, andthat is the value which remains visible.

The second is often referred to as a "scrolling list" or a "multi-list". These may show a number of
entries at once, and you can can select multiple values if youdesire.

The type of select list is defined by two factors. The first is asize parameter (how many values to
show at once) and themultiple attribute.

22 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

<!-- Simple pop-up list -->
<select name="computers">
<option value="1">1</option>
<option selected="selected" value="2">2</option>
<option value="3">3</option>
</select>

<!-- Scrolling, select multiple list -->
<select name="operating_systems" size="3" multiple="multiple">
<option value="win32">Microsoft Windows (XP, 2000, 98) </option>
<option value="linux">Linux (RedHat, Debian, Ubuntu etc)</option>
<option value="mac"> Apple (OS9, OSX) </option>
</select>

We can create a pop-up menu with CGI.pm with:

print $cgi->popup_menu({
-name => "computers",
-values => [1, 2, 3],
-default => 2,
-labels => {},

});

We can create a scrolling list with:

print $cgi->scrolling_list({
-name => "operating_systems",
-values => [qw(win32 linux unix mac)],
-default => [],
-labels => \%labels,
-multiple => 1,
-size => 1, # Viewport length

});

Exercises

1. Create a popup menu for your form.

2. Create a scrolling menu for your form.

3. Experiment with passing both anonymous references, and references to existing variables.

File upload
The file upload field allows us to upload files from the user. These may be files of any type (text,
image, mp3...). In order for these to be useful, we must use CGI’s start_multipart_form or
otherwise specify that we’re using a different encoding type.

The file upload box automatically includes aBrowse button on most web browsers. We can generate
a file upload box with:

print $cgi->start_multipart_form();

print $cgi->filefield({
-name => "file_upload",
-default => "Please enter a file name",
-size => 50,

});

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 4. HTML Forms

The size specifies the boxes width, and the maxlength the maximum number of characters allowed in
the filename and path. The default value may appear in the file field box, but is ignored by most
browsers. It is safe to leave off all values excepting the field name.

POST_MAX and DISABLE_UPLOADS

CGI has two package variables which control the maximum sizeof POSTings and whether or not
uploads can be used. To set a maximum size for your posts set$CGI::POST_MAX, this should be set to
a reasonable value such as 1 megabyte.

To disable file uploads completely, set$CGI::DISABLE_UPLOADS to a true value.

use CGI;

$CGI::POST_MAX = 1024 * 1024; # 1 MB posts
$CGI::DISABLE_UPLOADS = 1; # No uploads

my $cgi = CGI->new();

Exercise

Add a file upload box to your program.

Pretty HTML
CGI.pm generates very dense HTML by default. That is, it doesn’t add any extra newlines or spaces
between grouped elements (for example for checkbox and radio groups). This can make reading the
source code very difficult, and it also may mess up the neat formatting of your templates. For
example, the following is how a checkbox group is formatted:

<input type="checkbox" name="check" value="a" />a
 <input
type="checkbox" name="check" value="b" />b
 <input type="checkbox"
name="check" value="c" />c
 <input type="checkbox" name="check"
value="d" />d

We can make this a lot nicer, by adding our own newlines. Calling a CGI.pm method in list context,
returns the generated elements in a list. We can then join this list with newlines and any other
spacing desired:

my @boxes = (’a’ .. ’d’);

my $check = join("\n", $cgi->checkbox_group(
-name => "check",
-values => \@boxes,
-linebreak => 1,

));

This will produce:

<input type="checkbox" name="check" value="a" />a

<input type="checkbox" name="check" value="b" />b

<input type="checkbox" name="check" value="c" />c

<input type="checkbox" name="check" value="d" />d

24 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

The above does not work for select lists, which are always returned as a single scalar. Fortunately
they already include newlines.

Chapter summary

• CGI.pm can be used to generate all sorts of HTML tags. This is most useful for form elements.

• GET form submissions encode their data in the request string. POST submissions encode their
data in the request body.

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 4. HTML Forms

26 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form
input

In this chapter...
CGI programs are often used to accept and process data from HTML forms. In this section, we show
how we can use theCGI.pm module to parse form data.

CGI Parameters
One of the biggest advantages of using theCGI.pm module is the easy access it provides to all of the
CGI session information. The most useful of these are the values passed in from the user, but other
information such as the URL, hostname, path details and referrer can also prove helpful.

The parameters from an HTML form are usually encoded a "url-encoded" format:

name=Paul&company=Perl%20Training%20Australia

In this format input is encoded askey=value pairs, with eachkey=value combination separated with
an ampersand. Spaces, most punctuation, and non-printablecharacters are replaced by a percentage
followed by their ASCII value in hexadecimal.

For a GET operation, this encoded string appears as part of the URL. The web-server extracts this
portion of the URL and places it into theQUERY_STRING environment variable.

http://example.com/cgi-bin/test.cgi?name=Paul&company=Perl%20Training%20Australia

For a POST operation these are provided as part of the messagebody, and are fed to the program via
STDIN.

As you can imagine, decoding this by hand is hard work. It’s even harder than you may think, since
there are alternative encoding schemes that may be used, andalternative character sets to consider.

Fortunately, we should never need to decode a form submission ourselves, as we can useCGI.pm’s
param() method to fetch them:

#!/usr/bin/perl -w
Prints a "Hello" to the name given or to "Stranger"
use strict;
use CGI;

my $cgi = CGI->new();

my $name = $cgi->param(’name’) || "Stranger";

print $cgi->header(),
$cgi->start_html(’Hello!’),
$cgi->p("Hello, $name!"),
$cgi->end_html();

Using CGI’sparam() method (or an equally well-respected module) isalwaysa better idea than
parsing the parameter string ourselves.

Perl Training Australia (http://perltraining.com.au/)
27

Chapter 5. Accepting and processing form input

All parameter names
We can get a list of all the parameters passed in by callingparam without any arguments:

my @all_parameters = $cgi->param();

Calling param() in context
Certain types of form input fields define multiple values of the same name. For example a check box
group may have more than one check box checked. A scrolling list might have more than one
element selected. To access these we askparam for an array.

put all the check box values that were checked into @checked.
my @checked = $cgi->param(’group_name’);

Of course if we only expect one value we can say:

my $checked = $cgi->param(’send_email’);

When we callparam in a scalar context, we will always get a scalar result. If that parameter was
actually given a number of values, we’ll just get the first oneof them; nothing will tell us that there
was more than one.

Context issues

When called in a list content,param will return a list of values. If there was no value set for that
parameter, it will return an empty list. This can be a problemif you do the following:

check_input($cgi->param("name"), $cgi->param("phone"));

later

sub check_input {
my ($name, $phone) = @_;

...
}

This will work most of the time, however if there were multiple values forname then$phone will be
set to the wrong value. Perhaps worse, if there is no value forthename parameter, then$name will be
set to the value for thephone parameter!

The correct solution is to explicitly specify the context wewant fromparam():

my $name = $cgi->param("name");
my $phone = $cgi->param("phone");
check_input($name, $phone);

or
check_input(scalar($cgi->param("name")), scalar($cgi->param("phone")));

Exercise

1. Useparam to print out the values of your text and hidden fields in your form program.

28 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

2. Usingparam in list context print out the values of your select lists.

Setting our own parameters
param can also be used to set or override parameter values for the invocation of your program. This
can be useful to provide missing information (perhaps from adatabase) before using theCGI object
to populate values in a template.

Add an age to the CGI object:
$cgi->param(-name => "age",

-value => 15,
);

Add colours to the CGI object:
$cgi->param(-name => "colours",

-values => [’orange’, ’black’, ’purple’],
);

We can also append values to a parameter for the life of the program:

Add these numbers to any already selected
$cgi->append(-name => "number",

-values => [2 .. 5, 7 .. 10],
);

Deleting parameters
Sometimes we want to use a parameter value and then delete it from the parameter list. For example
if we are printing out submitted data to a file for later reference, we may wish to avoid including any
passwords. Rather than putting in checks for each excluded field, we can instead just delete the
values.

Delete the passwords now that we no longer need it
$cgi->delete("password", "repeat_password");

To delete all of the parameters (perhaps as part of a form reset) we can usedelete_all.

Delete all the parameters
$cgi->delete_all();

Printing out parameters
When debugging, it often helps to see all the values passed infrom the previous script. Unfortunately
Data::Dumper does not provide a friendly HTML format, and sometimes access to the error log may
not be available. Fortunately we can useDump to print these values for us in HTML.

Print all the user supplied values
$cgi->Dump;

This creates HTML similar to the following:

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 5. Accepting and processing form input

name1

value1

value2

name2

value1

The same behaviour can be achieved by interpolating the$cgi object in a string:

print "These are my values: $cgi";

Exercises

1. Change your earlier form program to also print "BINGO" if four or more fields have been given
values and submitted to your program. Try to distinguish between empty but present fields (such
as the text field with no data) and fields with actual data.

2. Print a funny message if any field has been submitted with multiple values (for example your
scrolling list or checkbox group).

Debugging with the CGI.pm module’s offline mode
CGI.pm allows us to run our CGI scripts in debug mode. This allows us to specify parameters on the
command line, rather than via a browser. To do this, we specify debug mode in our use line:

use CGI qw(-debug);

my $cgi = CGI->new();

Once debug mode is turned on, we will be prompted for input each time we run the program on the
command line:

% ./hello_name.pl
(offline mode: enter name=value pairs on standard input; press ^D or ^Z
when done)

This allows you to enter parameters in the formname=value for testing and debugging purposes.
CTRL-D on Unix orCTRL-Z on Windows (the end-of-file character) to indicate that you are
finished:

(offline mode: enter name=value pairs on standard input; press ^D or ^Z
when done)
name=fred
age=40
^D

CGI.pm assumes that the value pairs that you pass it are url-encoded. We’re just about to cover
how you can url-encode a variable.

30 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

CGI.pm and input fields
A nice but sometimes surprising behaviour of the CGI.pm class is to assign parameters fromparam
to your input fields. This means that if your script submits toitself and some of the validation fails
you can reprint the passed in data with no further effort. On the other hand you may not get the value
you expected to come out in your field.

To solve this problem, if you want the value you supply toalwaysbe the initial value in that input
then use the override option:

$cgi->hidden({
-name => "student_id",
-value => 36887,
-override => 1,

});

Exercises
These exercises build on the form you created during the previous chapter. Add the first two answers
into your program after youDump out the submission results. CallDump again, after these actions, to
verify the changes.

1. Usingparam change one of submitted values.

2. Append a value to the submitted checkbox values.

3. Add a default value to your pop up list. Submit the form witha different value and look at the
form elements. Does the pop up list get filled in with your submitted result or the default value?
Useoverride to force the default to show.

Building a GET string
Very occasionally we don’t actually want to have the user input data through a form, rather we’d just
like to give them a pre-made link to follow that passes our script any parameters we need. In this
case we have to build the GET string ourselves. One thing thatwe need to make sure of is that the
parameters we pass are in a form that our browser will support. So, we have to replace spaces with
%20 or + and escape other punctuation with the hexadecimal representation of their ASCII values.

Fortunately theCGI.pm module is very helpful here, with a function calledescape. This function has
an oppositeunescape such that:

unescape(escape($string)) eq $string

is true, but you shouldn’t need to useunescape all that often.

To build a GET string just do something like the following:

my $get_string = "section=" . $cgi->escape("Underwater photography");
my $url = a({-href=>"my_script.cgi?$get_string"}, "Current section");

In most cases GET strings are formed for us by the browser.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 5. Accepting and processing form input

File upload
CGI.pm can also be used to allow users to upload files. To do this we need to specify the correct
encoding type in the form element, if we use CGI.pm’sstart_multipart_form() function, then it’ll
do the right thing. Alternately we can specify it ourselves manually.

You’ll find the below code it inwww/upload.html.

<html>

<head>

<title>Upload a file</title>

</head>

<body>

<h1>Upload a file</h1>

<p>

Please choose a file to upload:
</p>

<form action="cgi-bin/upload.cgi" method="POST"
enctype="multipart/form-data">

<input type="file" name="filename">

<input type="submit" value="OK">

</form>

</body>

</html>

To handle file uploads we useupload() instead ofparam(). The value returned is special -- in a
scalar context, it gives you the filename of the first file uploaded with that input name. In a list
context it gives you all of the filenames uploaded with that input name. These filenames can also use
be used as filehandles.

my $filename = $cgi->upload(’filename’);

while(<$filename>) {

do something with file contents

}

To save the contents of the uploaded file, we can useFile::Copy. We also useFile::Temp to ensure
that we have unique filenames.Fatal saves us from having to check the supplied functions for
failure, by replacing them with a version which throws an exception instead.

use File::Copy qw(copy);
use File::Temp qw(tempfile);
use Fatal qw(copy chmod);

my $file_in = $cgi->upload(’file’);

If we have uploaded a file
if($file_in) {

my ($fh_save, $new_filename) =
tempfile("student_XXXXX", DIR => "/tmp/");

Prevent newline translations by Perl
binmode($file_in);
binmode($fh_save);

copy($file_in, $fh_save);

32 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

Change the permissions so that you will be able to read it.
In most cases this isn’t necessary as usually it will only
need to be read and edited by the web server
chmod 0644, $new_filename;

Tell the user what the file has been saved to:
print "File copied to $new_filename";

}

The above code can be found inwww/cgi-bin/upload.cgi.

Be mindful of the user id that runs your CGI programs on the server. In our case, all CGI
programs are run by www-data. This means that your CGI programs can see, read and over-write
file uploads from the other members of your class. However, without changing the permissions,
you will not be able to read those files yourself. In other set-ups your programs may run with the
same permissions as yourself.

Differences of permissions and environments between your user id and that of your running CGI
programs can cause subtle errors. For example you may find that your program runs perfectly
from the command line, but not from a browser. This is often caused by having configuration
files, libraries or data directories with insufficient permissions to allow web server use.

To assist with text file processing, Perl attempts to translate newline characters from the
filesystem format to its own internal format. In the case of binary files this can be a problem. To
ensure that newline character codes remain untouched, we can use the binmode method, as
shown above.

Exercises

1. Edit thewww/cgi-bin/upload.cgi file to change thetempfile template (student_XXXXX) to
include your student number. For examplestudent1_XXXXX.

2. Upload a file and ensure that it appears in the/tmp directory.

3. Edit your form script to handle file uploads. Upload a text file and print its content out to the
browser.

4. Now print out only every second line. (Hint: You can use$line % 2 == 0 to determine if$line
is an even number.)

5. (Advanced) Edit thewww/cgi-bin/upload.cgi file to include a popup menu, listing out the
filenames for files you have previously uploaded. Allow the user to select one of these files (or
upload another) for display.

You may want to look atglob to help select the files matching your template.

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 5. Accepting and processing form input

Chapter summary

• TheCGI.pm module can be used to access parameters passed to the CGI program using the
param() function.

• Using theparam() function in a list context will return all of the values passed to the program
with that key.

• Care should be taken ifparam() is ever going to be passed to subroutines.

• Calling param() in a list context without a key will return all of the names of the name=value
pairs.

• CGI.pm will fill in all of your form input fields with values from param() if possible. To prevent
this you have to use theoverride=>1 option in your input field.

• File uploads must use multipart forms.

• To access the file from an upload call theupload() function rather than theparam() function. The
return value can be used as both the filename and a filehandle.

34 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

In this chapter...
In this section we briefly examine some security issues arising from the use of CGI scripts including
the risks of handling tainted data and how to avoid problems.

This is not a complete guide to CGI security, but rather a simple discussion of a few important
points. Following all the recommendations in this chapter will not guarantee that your script is free
of security flaws, but it will certainly help.

For a more complete guide to Perl security, Perl Training Australia’s Perl Security
course-notes can be found on-line at http://perltraining.com.au/courses/perlsec.html .

The need for security

Always trust your users. Never trust their input.

It is easy to believe that, as a web programmer, you don’t needto worry about security.Nothing
could be further from the truth.Web programmers have the greatest need to understand security
issues as web programs are the source of a huge number of machine and data compromises.

Web programs run on your server, with access to your data, on behalf of strangers who have
unknown motives. Many of these strangers will be neutral or benign. Some will be malicious. All are
security risks, because the problems they cause (even by accident) can alter your systems, and
corrupt your data.

If you neglect the security issues inherent in writing code that gives strangers access to your servers,
then you run the risk of giving those strangers more access than you intended. This is true whether
your CGI programs are written in Perl, Python, C, Java, PHP oranything else.

Potential security pitfalls
Most of us wouldn’t give shell access on a secure machine to any random person who asked. Neither
would we install code from an unknown party just on their request. Yet it’s surprising how often
security is overlooked when writing code. Any time that a program accepts input from an unknown
party and does not verify that input before using it to affectyour system, it is inviting a security
violation.

Cleaning up after security violations can be a tremendous job. It makes sense, therefore, to try to
avoid them. Being aware of the issues is the first step; knowing how to avoid most of them is the
second.

The biggest security pitfall in most programs (regardless of language) is best summed up as
unintended consequences. Consider the following Perl code:

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Security issues

#!/usr/bin/perl -w
DON’T USE THIS CODE
use strict;
use CGI;

my $filename = CGI->param(’file’);

open(FILE, "/home/test/$filename")
or die "Failed to open /home/test/$filename for reading: $!";

print out contents of requested file
print <FILE>;

In this code we have used the two-argument version ofopen. Further, we haven’t specified a mode
for opening the file. Under normal circumstances, Perl will assume we meant to open this file for
reading. To many beginners, this code looks innocent. Yet imagine that we pass in the value:

../../etc/passwd

Oops. We just printed out the contents of/etc/passwd! Now imagine that we pass in the value:

../../bin/rm -rf /home/test/ |

This tells Perl to execute the command on the left and pipe theoutput to the given filehandle.
Printing out the contents of/etc/passwd is bad, but executing arbitrary commands is a disaster.

This isn’t rocket science. An average attacker can exploit this mistake to see the contents of files they
shouldn’t, overwrite existing files and run system commands. Writing code like the above is like
giving shell access to anyone who asks. And yet it’s such a common mistake.

Coding for security
Perl’sopen function isn’t the only place where you can go wrong. Any function or operator that
passes input via the shell requires careful attention, as itmay containshell meta-characters.
Assuming you can’t just avoid all such functions and operators, the only way to ensure your code is
safe is tonever trust input from the user.

Fortunately this isn’t too hard, and can be done without too much effort. If we know what characters
a field is allowed to have, we can use a regular expression to make sure that only these characters are
used:

#!/usr/bin/perl -w
use strict;
use CGI;

my $filename = CGI->param(’file’);

unless ($filename =~ /^([\w.-]+)$/) {
die "Filename is not valid!\n";

}

Filename is okay (only contains A-Z, a-z, 0-9, _, . and -)

open(FILE, "<", "/home/test/$filename")
or die "Failed to open /home/test/$filename for reading: $!";

print out contents of requested file
print <FILE>;

36 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

It is always better to specify what is allowed, rather than what is not allowed. This is because it’s
much easier to modify your expression to allow a few extra characters if necessary, whereas it is
almost impossible to be sure that you’ve listedall the potentially bad characters.

However, even if we’re careful, we can still make mistakes. Wouldn’t it be nice if Perl could provide
some extra level of security to ensure that we don’t use untrusted input by accident? It can, by using
taint mode.

Taint checking
It’s always important that we validate our input, and this isparticularly true if we’re working in a
security sensitive context. Unfortunately it’s easy to forget our validation steps, even if you are
programming defensively.

To help prevent this; Perl has aTaint mode. Taint mode enforces the following rule:

You may not use data derived from outside your program to affect something else outside your program --
at least, not by accident.

Taint mode achieves its aim by marking all data that comes from external sources astainted. This
data will then be considered unsuitable for certain operations:

• Executing system commands

• Modifying files

• Modifying directories

• Modifying processes

• Invoking any shell

• Performing a match in a regular expression using the(?{ ... }) construct

• Executing code using string eval

Attempting to use tainted data for any of these operations results in an exception:

Insecure dependency in open while running with -T switch at insecure.pl line 7.

Tainted data is communicable. Thus the result of any expression containing tainted data is also
considered tainted.

Turning on taint

Taint mode automatically enabled when Perl detects that it’s running with differing real and effective
user or group ids -- which most commonly occurs when the program is running setid.

Taint mode can also be explicitly turned on by using the-T switch on the shebang line or command
line.

#!/usr/bin/perl -wT # Taint mode is enabled

It’s highly recommended that taint mode be enabled for any program that’s running on behalf of
someone else, such as a CGI script or a daemon that accepts connections from the outside world.
Once taint checks are enabled, they cannot be turned off.

Using taint checks is often a good idea even when we’re not in asecurity-sensitive context. This is
because it strongly encourages the good programming (and security) practice of checking incoming
data before using it.

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Security issues

Untainting your data

The only way to clear the taint flag on your data is to use a capturing regular expression on it.

($clean_filename) = ($filename =~ /^([\w.-]+)$/);

if (not defined $clean_filename) {
die "Filename is not valid!\n";

}

Filename is okay (only contains A-Z, a-z, _, . and -)

The contents of the special variables$1, $2, (and so on) are also considered clean, but it’sstrongly
recommended that you use the list-capturing syntax shown above.$1, $2 can be set to
indeterminate-yet-clean values if your regular expression fails, whereas a list-capturing syntax
guarantees$clean_filename will be undefined on failure.

Passing your data through a regular expression does not meanthat it’s safe to use. However it should
force you to think about it first. There’s nothing to stop you from bulk-untainting data with an
expression like/(.*)/s, but doing so is extremely trusting of your data, and certainly not
recommended.

Environment variables $ENV{PATH}
In addition to data our program receives while running, we also have to be aware of environment
variables that can be set. In particular, if we are intendingto make any system calls, we need to be
aware of$ENV{PATH}.

ThePATH environment variable tells Perl where to look for system commands we might invoke.
However, since this value comes from outside our program, itcontains tainted data. The best solution
is to ensure that we set$ENV{PATH} to a known, good value:

#!/usr/bin/perl -wT
use strict;

$ENV{PATH} = q{/bin:/usr/bin};

Names can have odd characters
When constructing your taint checks keep in mind that peoplehave names which may contain all
sorts of letters. For example some names are hyphenated:Anne-Maree, others include spaces
Wellington Smith. Some names even include punctuation:O’Hara, Smith Jr., Lt.-Col Ivan.

Company names may include even more punctuation options:Young&Jacksons, Yahoo!etc.

When allowing characters for names, make sure you try to be asreasonable as possible. That doesn’t
mean you should allow any character in, but it does mean that if you’re adding this information into
a database, then you probably want to consider any consequences there as well!

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

Exercises

1. The HTML filewww/finger.html asks the user for a username and passes that to the
www/cgi-bin/finger.cgi program. Enter your username and see that it works.

2. Why is the data from the user tainted?

3. Turn on taint forwww/cgi-bin/finger.cgi. Try re-submitting the form, it should fail.

4. Changewww/cgi-bin/finger.cgi so that it untaints the data. Make sure that your script is only
allowing alpha-numeric characters.

5. Try submitting the form with various usernames to test it.Make sure it rejects ones that are
invalid. Below are some possible usernames to try:

pjf
1234
%foo
fred; echo $PATH
fred;echo$PATH

Cross-site scripting
Cross-site scripting is an exploit where the attacker inserts malicious coding into otherwise trusted
data. The malicious coding might be javascript designed to read cookies and submit that information
to a third-party site, or to take advantage of a known browserbug. Or it might just be used to by-pass
profanity filters, in order to upset your site’s audience.

Using taint checking can do a lot to help avoid cross-site scripting attacks. So can using theCGI.pm
module. For example, imagine that you have the following code:

use CGI;

my $cgi = CGI->new();
my $name = $cgi->param(’name’);

print $cgi->header, "<p>Hello $name</p>";

what happens if the user submits the following name?

Fred
<script><!--
alert("Give me your money");
--></script>

This will generate:

<p>Hello Fred
<script><!--
alert("Give me your money");
--></script></p>

What we’ve done is allow an otherwise unknown user to executejavascript of their choosing on our
website. This may read cookies, intercept mouse movements,or even rewrite our webpage in subtle
or not-so-subtle ways. If our submitted information is usedto populate pages visible to user users (as
may happen in a content management system, wiki, online forum, or other site) then this sort of
cross site scriptingattack could be used to fool innocent users into revealing their their login details
or other information.

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 6. Security issues

We can avoid cross-site scripting attacks in a few ways. If wedon’t intend our user to be submitting
HTML, then we canescapeit before sending it to the browser. It converts HTML characters such as
less-than (<) into HTML entities such as<. CGI automatically escapes these characters when
they’re used as arguments forform generating functions. However itdoes notescape them when
passed to any other functions, such ash1() or p().

To make sure that we escape our text, we have to explicitly call CGI’s escapeHTML function:

my $cgi = CGI->new();
my $name = $cgi->param(’name’);

print $cgi->header, "<p>",$cgi->escapeHTML("Hello $name"),"</p>";

Alternatively:

print $cgi->header, $cgi->p($cgi->escapeHTML("Hello $name"));

Another alternative:

my $safe_name = $cgi->escapeHTML($name):
print $cgi->header, "<p>Hello $safe_name</p>";

If you need to accept HTML for display then you may wish to examine the HTML::Scrubber and
HTML::Sanitizer modules available from the CPAN.

Other forms might be submitted
One of the biggest mistakes people have made in the CGI programs is to believe that onlytheir form
will be submitted back to the server. Thus, if the HTML specifies that only 30 characters can be
added to a field, this naive programmer may believe that the data returned will only ever have 30
characters for that field.

This is not true. Anyone can submit any form they like, from any server, to your CGI program. This
means that they can edit the hidden price field on your form, togive them a better price than you
were offering. It means they can submit hundreds of characters when your database is only expecting
10. It means that they can add fields, delete fields and generally do what they like to your form
information. And your CGI program will have to handle it.

You cannot rely on client-side code to validate the data thata user might send. Because the client
may not be using your form, or they might have client-side code disabled. So not only must you
check that your data contains safe characters, but you must ensure that the data is the correct length
if you have length restrictions and that other restraints are handled.

We’ll cover more on data validation soon.

Privacy
Keep in mind when you code that under standard HTTPeverythingis submitted in the clear. Even
though passwords are hashed out when users enter them, this is only to prevent casual
over-the-shoulder disclosure. This information will still be submitted in clear text and may be stored
during the journey.

40 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

If data security is important, if your data is at all sensitive, use secure HTTP. The HTTPS protocol
opens a secure connection between the web client and server.All data on this connection is
encrypted. This is essential for all transactions involving private information (such as medical
details, bank information, credit card numbers, etc) more secure.

CGI scripts run on a secure server exactly as they do on any other server.

In this chapter...

• Security should be a major concern for all web developers.

• Web programs are run by unknown parties with unknown motives.

• We should never trust users’ data.

• Taint mode helps identify unvalidated data from the user before we pass it to an external program.

• We can untaint our data by capturing it from a regular expression.

• CGI.pm can protect us from problems caused by cross-site scriptingattacks.

• We cannot assume that data coming to our program was submitted from our associated form.

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 6. Security issues

42 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with
HTML::Template

In this chapter...
Embedding HTML inside your Perl script can make it difficult to maintain both your HTML and
your code. This is especially the case if somebody else is writing the HTML and may wish to change
it at a later date.

To avoid the issue of mixing code and HTML, Perl has a number ofuseful templating modules
which can be used to keep things separate. These have a great many advantages -- it’s easy to change
the interface, or have multiple interfaces available. Web-designers and programmers are less likely to
step on each others toes, and people can use the most appropriate tools for each part. This chapter
will explain the use of theHTML::Template module, although you should be aware that other
templating modules are available.

The HTML::Template module does not come standard with Perl, but can be easily
downloaded from CPAN (the Comprehensive Perl Archive Network) (http://www.cpan.org/). You
can get documentation for it by reading perldoc HTML::Template .

If you need a more powerful templating system than HTML::Template, then you may wish to use
Template Toolkit (http://www.template-toolkit.org/).

What is HTML::Template
Like theCGI module,HTML::Template is a module to help make your life easier when writing CGI
scripts. Instead of embedding HTML into your code,HTML::Template allows you to load a custom
template or blueprint and fill in special fields. If used properly, HTML::Template can eliminate the
need to have any HTML in your script at all.

Here’s a simple template that prints a library-book reminder.

<html>

<head><title>Library reminder</title></head>

<body>

<p>

Dear <!-- TMPL_VAR name="name" -->,
</p>

<p>

Don’t forget that your book titled <!-- TMPL_VAR name="title" -->

by <!--TMPL_VAR name="author" --> is due back
<!-- TMPL_VAR name="duedate" -->.
</p>

<p>

If your book is returned late, a fine of $<!-- TMPL_VAR name="fine" -->

will apply for each <!-- TMPL_VAR name="timeperiod" --> the book
is late.
</p>

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. Splitting HTML and code with HTML::Template

<p>

Yours sincerely,

<i>The management</i>.
</p>

</body>

</html>

TheTMPL_VAR comments are used byHTML::Template, and get replaced with text supplied by the
program at execution time. Here’s a script that uses the template we’ve just seen to print a library
reminder.

#!/usr/bin/perl -w
use strict;
use HTML::Template;

my $template = HTML::Template->new(filename => "library.html");

$template->param(
name => "Paul Fenwick",
title => "Programming Perl, 3rd Ed",
author => "Larry Wall, Tom Christiansen and Jon Orwant",
date => "next Wednesday",
fine => 2.20,
timeperiod => "week"

);

print "Content-Type: text/html\n\n",$template->output;

Yes, it really is that simple. SinceHTML::Template let’s us split the HTML from the programming
interface, we’ll talk about them separately.

The template explained
HTML::Template provides a very powerful templating mechanism with many features more than just
simple variable substitution. In this section we’ll talk about these features, starting from the simple
ones and proceeding onto more advanced topics.

Conventions
HTML::Template accepts two kinds of tags. In the example above, we used the HTML comments
style. These allow us to create valid HTML which we can edit with standard HTML editors.

We can also use tags similar to standard HTML tags. These are more compact, but may upset various
HTML editors, and are likely to cause problems with validation services. We can use either
comment-style or tag-style templating methods, and we can mix both styles in the same document if
we desire. Here’s the example above using the HTML-style templating.

<html>

<head><title>Library reminder</title></head>

<body>

<p>

Dear <TMPL_VAR name="name">,
</p>

<p>

Don’t forget that your book titled <TMPL_VAR name="title">

by <TMPL_VAR name="author"> is due back

44 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

<TMPL_VAR name="duedate">.
</p>

<p>

If your book is returned late, a fine of $<TMPL_VAR name="fine">

will apply for each <TMPL_VAR name="timeperiod"> the book
is late.
</p>

<p>

Yours sincerely,

 <i>The management</i>.
</body>

</html>

In these notes and exercises we’ll use the comments-style tags. These show up more clearly with
syntax highlighting, allow us to validate our code, and are generally recommended.

There’s another note of convention that we need to mention before we progress any further, and
that’s of filenames.HTML::Template doesn’t care what the name of a template file is1 so we can use
anything we like. Programmers traditionally prefer to use files ending in.tmpl as it makes it obvious
that they’re templates. Web-designers, on the other hand, tend to prefer.html because it means their
favourite HTML-editor is more likely to play nicely with thefile. In these notes, we’ll use.html --
after all, a plain HTML file is just aHTML::Template file without any special tags.

Simple template fields
With the code already presented we’ve shown how to useTMPL_VAR fields as place holders for data
that we’ll plug into the document at run-time. How they work should be fairly self-explanatory -- the
tag is removed and the data we supply is inserted into its place.

TMPL_VAR and other templating tags don’t need to obey the regular rules of HTML. For example, it’s
perfectly valid to have a template tag inside an HTML tag. Thefollowing code lets us set the alt tag
on an image at run-time.

<IMG SRC="/images/picture.jpg" ALT="<!-- TMPL_VAR NAME=foo -->">

Exercises

1. View www/cgi-bin/petpage.cgi in your browser.

2. Take the HTML intemplates/petpage.html and modify it to insert templating fields forname,
age andpet.

3. View www/cgi-bin/petpage.cgi in your browser and observe the effects.

Non-web accessible templates
It should be noted that our templates are stored outside of our web-accessible document root, and
there’s a very good reason for this. Templates are not intended to be seen by the end-user - they need
to be processed by one of our programs first. Serving a raw template is likely to be confusing to a
user at best. At worst, it may disclose information that we intended to keep secret.

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. Splitting HTML and code with HTML::Template

By storing the templates in a separate, non-web accessible directory, we avoid any risk of them
accidentally being served to the world. We also have the advantage of keeping all of our templates in
one place, making them easier to maintain the future.

The same applies to configuration files, modules, and libraries. We certainly don’t want these being
served by accident, as they may contain passwords or other sensitive information that could place
our systems at risk.

Escaping in template fields
Sometimes we want to don’t want our data to appear verbatim inside the HTML that we’re
producing. This is particularly the case if we’re insertingdata that might contain less-than or
greater-than signs, or other characters that have special meaning. In this case we want to doHTML
encodingSometimes we want to encode information into a URL, in which case we want to doURL
encoding. Sometimes we might even want to display data in its encoded and unencoded forms in the
same page.

Rather than having to do this tedious escaping ourselves in our Perl code, we can get
HTML::Template to do the hard work for us. This is also best illustrated by example.

This is how I escape for HTML:
<!-- TMPL_VAR name="data" escape="html" -->

This is how I escape for a URL:
<!-- TMPL_VAR name="data" escape="url" -->

Here is my data with no escaping:
<!-- TMPL_VAR name="data" -->

Most importantly, by ensuring that we correctly escape our data we reduce the opportunity for
cross-site scriptingattacks.

If you’re generating the contents of your template tags withtheCGI module, then you won’t need to
use these escapes. As described previously in these notes, theCGI module will use the appropriate
type of escaping needed for the task at hand.

Conditionals
Sometimes you’ll want to display different content depending upon the execution of your program.
In some cases we might select a template to use at runtime, depending upon if, for example, our user
was borrowing or returning a book. In other cases, we might want to display fundamentally the same
page, but choose to add or remove some sections depending upon circumstances. With our library
example, we might want to display a reminder to the user if they have a book that’s overdue, or alert
them that a book they’ve placed on hold is available for borrowing.

We could use aTMPL_VAR tag which we can then bind to either the empty string or the HTML which
contains our reminder message and associated formatting. That will work, but it potentially means
having ugly chunks of HTML in our code, especially if the reminder comes wrapped in a table with
images and special fonts. We started usingHTML::Template to avoid this very situation, so isn’t there
a better way?

The solution is to useHTML::Template’s conditional tags. Here’s our example above with an
optional section that only gets displayed if a special message exists.

46 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

<html>

<head><title>Library reminder</title></head>

<body>

<!-- TMPL_IF name="message">

<div id="message">

PLEASE NOTE

<!-- TMPL_VAR name="message" -->

</div>

<!-- /TMPL_IF -->

<p>

Dear <!-- TMPL_VAR name="name" -->,
</p>

<p>

Don’t forget that your book titled <!-- TMPL_VAR name="title" --> by
<!-- TMPL_VAR name="author" --> is due back <!-- TMPL_VAR name="duedate" -->.
</p>

<p>

If your book is returned late, a fine of $<!-- TMPL_VAR name="fine" -->

will apply for each <!-- TMPL_VAR name="timeperiod" --> the book
is late.
</p>

<p>

Yours sincerely,
</p>

 <I>The management</I>.
</body>

</html>

HTML::Template uses the same rules for truth as does regular Perl. As you might expect, there’s also
TMPL_ELSE andTMPL_UNLESS tags too. Unfortunately there is no such thing as aTMPL_ELSIF tag.

There is no such thing as a /TMPL_ELSE (close TMPL_ELSE) tag. Instead you should close with
the same tag that you used to open the conditional. That means that every TMPL_IF needs to
have a matching /TMPL_IF, and every TMPL_UNLESS needs a matching /TMPL_UNLESS, regardless of
whether you use TMPL_ELSE tags or not.

Exercises

1. Take the template intemplates/tmpl-cond.html and modify it so that it displays some extra
text and the contents of theerror parameter only if it exists.

2. Use thewww/cgi-bin/tmpl-cond.cgi script to test your changes.

Looping constructs
The examples that we’ve seen so far are great if we’re dealingwith singular pieces of data, but what
if we want to display a list of books a user has currently borrowed? This list could contain any
number of books. How would we write a template to deal with that?

A naive approach would be to use aTMPL_VAR tag where we wish to insert the list, then build that list
and bind it into place. That’s great, except now our program has the work of doing the HTML mark
up for the list, and that’s something we’re trying to avoid. To solve this, we need to be able to deal
with loops in our templates.

Perl Training Australia (http://perltraining.com.au/) 47

Chapter 7. Splitting HTML and code with HTML::Template

Loops inHTML::Template are almost identical in concept to Perl’sforeach loops -- that is, we step
through a list of values, examining the next one in our list every time we go through the loop. Let’s
see an example.

<!-- TMPL_LOOP name="books_borrowed" -->

<i><!-- TMPL_VAR name="author" --></i>

<!-- TMPL_VAR name="title" -->

(<!-- TMPL_VAR name="publisher" -->)

</TMPL_LOOP>

Here we’ve printed an unordered list of books, with some special formatting for author, title and
publisher. If we wanted to, we could have the title of the bookcome first, or we could print the books
out in a table, or do any other formatting change, all withouthaving to touch our Perl code at all.

These looping constructs can be very powerful. Your template can be set up to perform
different actions for the first and last lines of your loop (for example, opening and closing table
tags), and can distinguish between odd and even rows (for example, in case you want
alternating rows to have different backgrounds). It’s even possible to have conditional constructs
based upon whether or not a given loop is empty or not. While the coverage of these concepts is
beyond the scope of this course, all the information can be found using perldoc
HTML::Template .

Including files
Often you’ll be working on a website that has elements that are common to every page, like headers
or footers, or huge animated advertisements with musical scores. If people are sensible, these
common elements are usually placed into separate files and then inserted into the HTML using some
mechanism depending upon your web-server or operating environment.

Now, it wouldn’t it be nice if we could include these files whenusing our templates as well? Well,
there’s a better way than loading the contents into aTMPL_VAR tag, and that’s using aTMPL_INCLUDE
tag. Let’s see some in operation.

<!-- TMPL_INCLUDE name="header.html" -->

Thank-you for flying with <!-- TMPL_INCLUDE name="airline_logo" -->

<!-- TMPL_INCLUDE name="footer.html" -->

TMPL_INCLUDE includes the file contents as if it were cut’n’pasted directly into the parent file at that
point. This means that your include files can include templating information (including further
include directives), just like your parent file. Since included files can include other files, there’s
potential to get into trouble with files endlessly includingeach other.HTML::Template provides some
protection to this by only allowing includes 10 levels deep,although you can change or disable that
if you like.

Using Template Objects
Now, you’ve all had some experience with writing templates,and as you can see it’s possible to do
this without any understanding of what the code that processes these templates looks like. That’s an

48 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

important thing to remember, someone doesn’t need to know Perl (or any programming language) to
create or edit a template. That’s what makes them so useful.

In this section, we’ll cover what the programmer needs to know in order to have templates work the
way they expect.

Binding simple parameters
We’ve already seen a script that binds values to parameters in a template. We use theparam method
to set values. While this has the same name and a similar function to that of theCGI module, don’t be
fooled -- the way it processes arguments is subtly different.

To bind a value to a parameter, we pass in that parameter’s name and its value, like this:

#!/usr/bin/perl -w
use strict;
use HTML::Template;

my $template = HTML::Template->new(filename => "library.html");

$template->param(title => "Programming Perl, 3rd Ed");
$template->param(author => "Larry Wall, Tom Christiansen and Jon Orwant");

As you can see from the example above, there’s no need to set all the parameters in the same call,
you can figure out parameters and set them as you go. If you do want to set a number of values at
once, you can; just pass in as many name-value pairs as you need:

$template->param(
name => "Paul Fenwick",
title => "Programming Perl, 3rd Ed",
author => "Larry Wall, Tom Christiansen and Jon Orwant",
date => "next Wednesday",
fine => 2.20,
timeperiod => "week"

);

You might have realised that these name-value pairs look awfully familiar to things we put into (and
take out of) hashes. If you already have a hash of all the data you need, you can plug that directly
into theparam() method and things will work how you’d expect:

$template->param(%info);

If you try to bind a parameter that doesn’t exist in the template you’re using, an exception will be
thrown (usually resulting in your script dying with an appropriate error). Often this is what you
want, as it makes typos immediately obvious.

Sometimes you specifically don’t want this behaviour. For example, you might write a subroutine
which fills in information about the current user. The subroutine would like to provide that
information without caring that the template will use all of it, and having your script die just
because you didn’t want to show the user’s age can be a major headache. In these cases, you
can request that HTML::Template just ignore parameters that don’t exist. This is requested at the
time you create the template, like this:

my $template = HTML::Template->new(
filename => "invite.html",
die_on_bad_params => 0,

);

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. Splitting HTML and code with HTML::Template

Binding complex parameters
We’ve seen how to deal with simple parameters, which are great for dealing with singular pieces of
data, but they don’t answer what we need to do for loops. That needs something a little bit more
complex. We still useparam to bind values, but instead of binding each parameter to a single value,
we instead bind it to a list reference.

Now, we can’t just use any old list reference. You see,HTML::Template lets us set a whole swag of
different variables each time we go around one of its loops, and a simple list like[3,4,6,7] only
contains a single value in each position. What we instead want to use is a list of hash references,
because a hashcancontain multiple name-value pairs.

Relax, it sounds difficult, but it’s really quite simple, especially when you have an example to work
by.

$template->param(library_books =>

[
{

title => "Programming Perl",
author => "Larry Wall, et al",

},
{

title => "Object Oriented Perl",
author => "Damian Conway",

},
]

);

In the example above, our loop would have two iterations. Thefirst time around we’d be dealing with
the "Programming Perl" book, and the second time the "ObjectOriented Perl" book. If you feel
comfortable with references, you can build up this structure in other ways.

Exercises
This should bring all of these concepts together.

1. In templates/total.html you’ll find a HTML template. This prints out the headers and footers,
and an empty table. Add a looping construct to the table body so that we can fill in the table.

2. In www/cgi-bin/total.cgi you’ll find scaffolding for this exercise. This scaffoldingincludes a
number of hash references. Use these to populate the table from the above exercise.

3. You’ll notice some more template variables intemplates/total.html, pick some values and
set these from your cgi program.

Associating other objects
Wow, thisHTML::Template module is great stuff. I’ve got a CGI script which takes inputfrom a user,
and then displays some or all of it back on a confirmation page along with some other details. Being
a good programmer, I’m much too lazy to pull everything out from myCGI object and push them
back into myHTML::Template object. Is there any way I can do this automatically?

50 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

It so happens thatHTML::Template allows you toassociatea template with another object which has
a parameter list, such as aCGI object. This means that if you don’t provide a value for a given
parameter, the value on theassociated objectwill be used instead.

Say that a user has filled in their name, address, phone number, and number of plush penguin toys
they own. Rather than having code like this:

use strict;
use CGI;
use HTML::Template;

my $cgi = CGI->new;
my $template = HTML::Template->new(filename => "penguinrego.html");

$template->param(
"name", $cgi->param("name"),
"address", $cgi->param("address"),
"phone", $cgi->param("phone"),
"penguins",$cgi->param("penguins")

);

We can instead have code that looks like this:

#!/usr/bin/perl -w
use strict;
use CGI;
use HTML::Template;

my $cgi = CGI->new;
my $template = HTML::Template->new(

filename => "penguinrego.html",
associate => $cgi

);

That’s it. Fields we don’t fill in explicitly just get copied out of our CGI object without any extra
work on our behalf. Fields that we do fill in ourselves will have those values. Nifty, isn’t it?

Using CGI.pm with HTML::Template
We’ve already seen howHTML::Template and theCGI module can work together in sharing data.
This section now explores using both modules together for maximum program maintainability, as
well as a few common tricks that you might like to employ.

HTML::Template can only fill in the parts of our template for which we have tags. This is fantastic
for single values. However consider the problem of a select list in which we’re generating values
based upon data available to our CGI application. Also consider that we wish to dynamically select a
value, potentially based upon previous user input:

<select name="title">

<option value="Mr">Mr</option>

<option value="Mrs">Mrs</option>

<option value="Miss">Miss</option>

<option selected="selected" value="Ms" >Ms</option>

</select>

In a select list, we mark the selected value by adding the string:selected="selected". Values
which aren’ t selected don’t get this string. We can generatecode for select lists with a
TMPL_LOOP, however it isn’t very tidy:

Perl Training Australia (http://perltraining.com.au/) 51

Chapter 7. Splitting HTML and code with HTML::Template

<select name="title">

<!-- TMPL_LOOP name="title_loop" -->

<option value="<!-- TMPL_VAR name=value -->"
<!-- TMPL_IF name="selected" -->

selected = "selected"
<!-- /TMPL_IF -->

><!-- TMPL_VAR name="value" --></option>

<!-- /TMPL_LOOP -->

Further, we need to ensure that we set aselected value for each item in our select list in our CGI
script:

my @title_loop;
foreach my $title (qw(Mr Mrs Miss Ms)) {

my $selected = ($cgi->param("title") eq $title);

push @title_loop, {
value => $title,
selected => $selected,

};
}

$template->param(title_loop => @title_loop);

What a nightmare! This should be an easy matter, and so it is. All we need to do is get CGI to
generate the select list and then plug that into our template! Now the above template becomes:

<!-- TMPL_VAR name="title_select" -->

and the CGI code becomes:

my $title_select = $cgi->popup_menu(
-name => "title",
-values => [qw(Mr Mrs Miss Ms)],

);

$template->param(title_select => $title_select);

That’s easier to read, maintain and much less likely to contain bugs. Unfortunately it reduces the
ability for the template maintainer to control the HTML which is generated. There’s an alternative
way of handling situations like this usingHTML::FillInForm which we will examine in a few pages
time.

Exercise

1. Write a basic form usingHTML::Template andCGI. Make sure your form includes a text box,
and either a checkbox group or select list. Ensure that you have template tags for the values of
each form field.

2. Write a CGI script which prints out that form.

3. Submit your form and see that your text box value is not automatically filled in.

4. Associate yourCGI object with your template, and submit some values. Make surethat your
whole form is now automatically filled in.

52 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

Less templating with HTML::FillInForm
HTML::Template andCGI.pm make a great pair. However, sometimes it would be even easierif we
didn’t have to use them. Editing each HTML form to add templating tags for all the values is a chore.
Generating each form element in CGI affects the opportunities for the web developers to have things
appear exactly the way they want. It also means that the resulting template isn’t complete, it’s
missing a number of form elements that are essential for its use.

Wouldn’t it be nice, if we could just say: there’s a HTML form over there, fill it in?

This is whatHTML::FillInForm lets us do!HTML::FillInForm automatically inserts data into
HTML input fields, text areas, radio buttons, checkboxes andselect tags. It can be used to insert data
from a database, a pre-existing form submission or purpose generated object or hash.

use CGI;
use HTML::FillInForm;

my $cgi = CGI->new();
my $fif = HTML::FillInForm->new();

Fill in the HTML form with data from $cgi
my $output = $fif->fill(

file => "form.html",
fobject => $cgi,

);

print $cgi->headers();
print $output;

The above example will open the file inform.html and fill it in with the data previously submitted
(from $cgi). If nothing has been submitted, the form will use any default arguments; just as if you
had navigated to it directly.

HTML::FillInForm isn’t a replacement forHTML::Template. There are many situations where you
may wish to use both of them together. For example, you may wish to prompt the user to correct
some details on a registration page, using the same form thatthey filled in. This message can be
added usingTMPL_IF andTMPL_VAR tags.

To useHTML::FillInForm with HTML::Template we need to tweak the above code a little to allow us
to giveHTML::FillInForm the processed template:

use CGI;
use HTML::FillInForm;
use HTML::Template;

my $cgi = CGI->new();
my $fif = HTML::FillInForm->new();
my $template = HTML::Template->new(

filename => "form.html",
associate => $cgi

);

Add any extra stuff to the template, and then get its output
my $html = $template->output;

Fill in the HTML form with data from $cgi
my $output = $fif->fill(

scalarref => \$html,
fobject => $cgi,

);
print $cgi->header();
print $output;

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 7. Splitting HTML and code with HTML::Template

That’s it! Now we can write our forms out in full HTML and have them "just work". We can use
templates when we want to uniformly include content, or generate conditional material. CGI.pm
processes and handles our parameters but is not necessary for most HTML generation.

Exercise

1. Change your template from the previous exercise to include the select list or checkbox group in
the HTML.

2. Change your CGI script to use HTML::FillInForm.

3. Submit your form and verify that your select list or checkbox group is filled in.

4. Convert the rest of your template to just be standard HTML.Verify thatHTML::FillInForm
continues to fill in the form values.

Chapter Summary

• HTML::Template allows you to split your Perl code from your HTML code.

• You can use either standard tags orcomment tagsfor writing templating fields. You can mix both
in the same document.

• Template fields can be used to escape the text which is bound tothem for both inclusion in HTML
and in URLs.

• HTML::Template supports conditionals and loops, which are particularly useful for generating
tables.

• HTML::Template can be used to include files into your HTML. These files are alsoevaluated for
templating tags.

• To bind values to loops, we need to passHTML::Template a list reference containing many hash
references.

• It’s possible toassociateaCGI object with aHTML::Template object, to have parameters
submitted by the user automatically filled in.

• CGI.pm can be used to generate multi-part form elements forHTML::Template.

• HTML::FillInForm can be used to fill in a HTML form with data fromCGI.pm.

Notes
1. In fact, you don’t even have to use filenames at all. You can passHTML::Template other things to

use as templates. Seeperldoc HTML::Template for more details.

54 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

In this chapter...
Data validation is essential for any program, regardless ofits role, however it is particularly
important when writing web applications. Users may be lazy,misguided, have poor typing skills, or
may even be looking for a way to exploit your system. As such, it’s important that we check and
verify any data that is provided by the browser.

Client-side checking
One elegant way of performing validation is to use javascript and performclient-side checking. This
allows our application to give immediate feedback if the user has missed a required field or provided
invalid data. However client-side checking shouldneverbe relied upon. Users may have javascript
disabled or restricted, and a clever attacker will simply submit data directly to your server. So while
client-side checking will improve your user-experience, it does little to improve the overall security
of your application.

Instead, it is essential that all data is checked on the server before being used. Perl’s taint mode can
assist as a safety harness in this regard, however it doesn’tsolve all possible problems.

Although we don’t cover client-side checking in this course, there are a number of excellent
Javascript resources to help you. In particular, the JSAN (JavaScript Archive Network) library’s
Data.FormValidator can be built from the same profile as Data::FormValidator (covered below)
to provide consistent checking both client and server-side.

More information about Data.FormValidator can be found at
http://www.openjsan.org/doc/u/un/unrtst/Data/FormValidator/.

Simple server-side checking
Below is an example of basic data validation. A form to submitto this file can be found in
www/validate.html and the below code inwww/cgi-bin/validate.cgi.

#!/usr/bin/perl -w
use strict;
use CGI;
use CGI::Carp qw(fatalsToBrowser);

my $cgi = CGI->new();

print $cgi->header;
print $cgi->start_html({-title=> "Validation Script"});

my @errors;
push (@errors, "Year must be numeric") if $cgi->param(’year’) !~ /^\d+$/;
push (@errors, "You must fill in your name") if $cgi->param(’name’) eq "";
push (@errors, "URL must begin with http://") if $cgi->param(’url’) !~ m{^http://};

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. Data validation

if (@errors) {
print $cgi->h2("Errors"), "\n",

$cgi->start_ul, "\n";

foreach (@errors) {
print $cgi->li($_), "\n";

}

print $cgi->end_ul, "\n";
} else {

print $cgi->p("Congratulations, no errors!"), "\n";
}
print $cgi->end_html;

Exercise
Open the form for the validation program in your browser. Trysubmitting the form with various
inputs.

Group exercise

1. What, if any, issues can you spot with the current validation checks that we have?

2. How can we improve these checks?

3. How could we handle validating multiple fields with similar constraints: multiple graduation
dates, first name fields vs surnames, etc.

Data::FormValidator

The version of Data::FormValidator we show off in this chapter is 3.63. Later versions are
backwards compatible, but may have different recommendations. To learn more about
Data::FormValidator visit its page on the CPAN at
http://search.cpan.org/dist/Data-FormValidator/.

As identified in the above exercises, form validation can getboth very repetitive and rather
complicated. Since it’s such a common problem, there’s already a good solution.
Data::FormValidator allows us to specify which fields are required, and also to specify validation
functions for each of these fields. There are some defaults wecan use, but we can also create our
own. The collection of these rules is called a profile.

Required and optional fields
The most logical part of our profile to start with is that whichspecifies what is, and isn’t required.
We can do this by creating the keys in our profile hash:

56 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

my %profile = (
required => [qw (

title firstname lastname email postcode
phone check radio)

],
These fields are optional
optional => [qw (initial title_other)],

);

The list of required fields plus the list of optional fields should cover all the fields on our form.

Once we have these fields we can perform some very basic validation on our form:

my $results = Data::FormValidator->check($cgi, \%profile);

if($results->has_missing()) {
$template->param(message => "The following fields are ".

"missing: " . join(" ", $results->missing());
}
else {

$template->param(message => "Everything accounted for!");
}

Exercise

1. You can find a simple validation program inwww/cgi-bin/data_validation.cgi with a
corresponding template intemplates/data_validation.html. Edit the profile to make thename
andyear fields required. Make thefavourite_bird andfavourite_animal fields optional.

Dependencies
Sometimes we want to require one field, only if another has been filled out, or has a certain value.
For example, if we provide a limited range of titles (Mr, Mrs,Ms, Miss, Dr) we may also add an
"Other, please specify" option. In this case, we’ll want the"Other" box filled in.

Another example is for things like credit cards. If the credit card number is filled in, then we’ll want
to ensure that the card type, expiry date and card holder nameare also included, even though filling
in the credit card details itself may be optional.

We can do this by using the dependencies keyword in our profilehash:

my %profile = (
dependencies => {

If our title is "other", we need the "other"
box filled in.
title => {

other => ["title_other"],
},
ccard_no => [qw(ccard_type ccard_exp ccard_name)],

},
);

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. Data validation

Exercise

1. Edit your profile to make thefavourite_bird field required if thefavourite_animal field is
bird.

Constraints
The guts of the profile is in the constraints. These tellData::FormValidator how tovalidateour
data. The constraints hash can contain fields that are not mentioned in yourrequired or optional
hashes. This is handy as it means you can use the same set of constraints (thus keeping them all in
one location) for all of your applications and pass different required andoptional hashes for each
page.

For the most part, our constraints are regular expressions:

my %constraints = (
firstname => qr{^[a-zA-Z,.& -]+$},
postcode => qr{^\d{4}$},

);

We can also name our constraints, which comes in handy later:

my %constraints = (
firstname => {

name => "name"
constraint => qr{^[a-zA-Z,.& -]+$},

}
postcode => qr{^\d{4}$},

);

Data::FormValidator has a number of predefined constraints, which you can read about using
Data::FormValidator::Constraints. We can refer to these predefined constraints in our profile by
name:

my %constraints = (
firstname => {

name => "name"
constraint => qr{^[a-zA-Z,.& -]+$},

}
postcode => qr{^\d{4}$},
email => ’email’,

);

Finally, we can specify our own constraint rules by passing in a subroutine reference (more on this
later in this chapter):

my %constraints = (
firstname => {

name => "name"
constraint => qr{^[a-zA-Z,.& -]+$},

}
postcode => qr{^\d{4}$},
email => ’email’,
phone => \&validate_phone,

);

and later:
sub validate_phone { ... }

58 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

Anything not covered by a constraint rule is assumed to be valid regardless of its value.

Adding constraints to our profile

To add our constraints to a profile, we just pass in a reference:

my %profile = (
required => [...],
optional => [...],
dependencies => { ... },
constraints => \%constraints,

);

Checking for validity

Our above example of usingcheck only checked whether data was missing. We can also check to see
if anything was invalid:

my $results = Data::FormValidator->check($cgi, \%profile);

if($results->has_invalid() or $results->has_missing()) {
$template->param(message => "There were some errors.");

}
else {

$template->param(message => "All valid! Thankyou.");
}

Data::FormValidator provides methods to see which fields were missing or invalid:

foreach my $field ($results->missing()) {
print "$field was required but is missing.";

}

foreach my $field ($results->invalid()) {
print "$field has been given an invalid value.";

}

Exercises

1. Write constraints for each field in your form.

2. Test your form by submitting valid and invalid data. Checkthat you get the results you expect.

3. Add a constraint name to youryear field and a corresponding message.

More complex validation
Regular expressions are a great for simple validation, but what if we want to perform other
transformations on that data? For example, Australian telephone numbers may start with the country
code (61 -- usually preceded by a plus) and a single digit areacode. Alternately they may start with a
two digit area code, possibly in parentheses. They may have no punctuation at all, or they may
contain spaces or dashes separating the digits.

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 8. Data validation

Writing a regular expression to match all of these options isn’t easy. Wouldn’t it be easier to get
access to the data, strip out all the extra formatting that people like to add, and then use a regular
expression to verify the numbers themselves? That’s the kind of thing we might want to put into a
subroutine.

Data::FormValidator allows us to specify subroutines instead of regular expressions as our
constraints. These subroutines are called in scalar context and should return the data if valid, or
nothing if invalid. Zero values are treated correctly.

We can provide subroutines for our data validation in two ways. The first is to provide an anonymous
subroutine:

my %constraints = (
...
phone => sub {

my ($val) = @_;
my ($match) = ($val =~ /^([\d +()-]+)$/);
return $match;

},
...

);

The above example does not fulfil all of our requirements as itdoes not count the number of digits,
nor does it strip out additional punctuation. In order to do that we need a longer subroutine, and
rather than clutter our constraints hash we can use a reference to subroutine defined elsewhere in our
file:

my %constraints = (
...
phone => \&validate_phone,
...

);

and later:

This only does Australian-style phone validation

sub validate_phone {
my ($phone) = @_;

Remove spaces, parentheses and dashes
$phone =~ tr{ ()-}{}d;

+61 should have nine digits after it.
if ($phone =~ m{^ \+61 (\d{9}) $}x) {

Return 0-prefixed form, without country code.
return "0$1";

} elsif ($phone =~ m{^ (0 \d{9}) $}x) {
return $1;

}

If we reach here then our phone number wasn’t
valid.
return;

}

When we provide a reference to an existing subroutine, we must not include parentheses.
Writing the following:

60 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

\&validate_phone() # oops!

calls the subroutine and takes a reference to the return value.

Exercises

1. Change the constraint on youryear field such that it must specify a leap year. Use a subroutine
constraint to test this.

(Hint: A leap year is a year which is divisible by 4, but not by 100, unless it is also divisible by
400.)

2. Test your form by submitting valid and invalid data. Checkthat you get the results you expect.

Error messages
Sometimes it would be useful if we could provide more information than just the fact that the field is
invalid. For example, we might want to tell the user what the field is allowed to contain so that they
can spot what’s wrong.

We can do this by mapping our constraint names (as mentioned above) to messages.

my %msgs = (
constraints => {

name => q{ Names may only contain letters
in the alphabet, commas, dots,
ampersands, spaces and hyphens.

},
postcode => q{ Please enter an Australian

postcode of exactly four digits.
}

}
);

my %profile = (
required => [...],
optional => [...],
dependencies => { ... },
constraints => \%constraints,
msgs => \%msgs;

);

Like the constraints, we can store messages in the messages hash that don’t refer to values in the
required or optional lists. This allows us to store consistent messages for all ofour constraints
across all of our applications, in one place.

We can also specify other information with our messages, such as custom error prefixes,
the default missing and invalid messages and formatting string. Read the documentation
(http://search.cpan.org/dist/Data-FormValidator/lib/Data/FormValidator.pm) for more information.

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 8. Data validation

Using our error messages

We can access the messages that we’ve entered by calling themsgs() method on our results object. It
returns a hash of field name, message pairs such as:

firstname => ’* Missing’

These messages are designed to appear next to the form elements they refer to.

So how can we get those messages next to their form elements? Well, they’re not form data, so
HTML::FillInForm can’t work its magic here for us. We’ll have to add template tags. We could go
forth and add them in ourselves, but this would add a lot of clutter to our HTML and distract from
our form layout. Alternatively, we could use a Perl module todo it for us:

use Data::FormValidator;
use Data::FormValidator::Util::HTML qw(add_error_tokens);

Add the error tags for HTML::Template
my $templ = add_error_tokens(

html => "example.html",
prefix => "err_",

);

Use the above template to create our template object
my $template = HTML::Template->new(scalarref => \$templ);

Do validation and then check results
my $results = Data::FormValidator->check($cgi, \%profile);

if($results->has_invalid() or $results->has_missing()) {
$template->param(message => "There were some errors");
$template->param($results->msgs());

}
else {

$template->param(message => "All valid! Thankyou.");
}

Data::FormValidator::Util::HTML takes the HTML provided to it and addsHTML::Template tags
to each of the form fields. These are named according to the prefix specified in the
add_error_tokens function. Thus in our case they’ll be callederr_title, err_firstname and so
on.

We can specify a prefix for each of our error messages inData::FormValidator by adding the
prefix key to themsgs hash:

my %msgs = (
prefix => "err_",
constraints => {

name => q{ Names may only contain letters in the
alphabet, commas, dots, ampersands,
spaces and hyphens.

},
}

);

The above approach of using Data::FormValidator::Util::HTML only works if you are not
generating any form elements with CGI.pm and plugging them in via HTML::Template or another
templating tool. If you are generating form elements this way (as described in the previous

62 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

chapter) then Data::FormValidator::Util::HTML will not see them and thus will not be able to
generate the message tags for you. Of course you can always generate them yourself.

Exercises

1. Add messages for your year and favourite bird constraints. You will need to add names to your
constraints in your constraints hash.

2. Test your form by submitting valid and invalid data. Checkthat you get the results you expect.

3. Add a constraint name to youryear field with a corresponding message.

Validation and tainting
Most validation withData::FormValidator is done using regular expressions. If we write these
regular expressions carefully then we can be certain that the resulting data is not only valid, but that
it can also be safely untainted. To make this easy,Data::FormValidator will untaint valid values for
us if requested.

We can mark particular fields to be untainted by using theuntaint_constraint_fields parameter:

my %profile = (
...,
untaint_constraint_fields => [’year’, ’bird’],

);

After this, values returned by thevalid method are untainted for the specified fields. All other data
will remain tainted.

Exercise

1. Enable untainting for your profile:

my %profile = (
...,
untaint_constraint_fields => [’year’, ’bird’],

);

Use the following code to test your valid values for taintedness:

use Scalar::Util qw(tainted);

foreach my $field ($results->valid()) {
if(tainted($results->valid($field))) {

print "<p>$field is still tainted</p>";
} else {

print "<p>$field is not tainted</p>";
}

}

Be careful!$results->valid($field) will return an array reference, if there was more than
one value for that field name.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 8. Data validation

Validation code and modules
Many of your programs will have identical constraints on thefields of the same names. It’s often a
good idea to place your constraints, messages, and dependencies into a module where they can be
easily accessed. This means that each program that needs to perform validation need only provide its
list of required and optional fields to work.

Chapter Summary

• Client side data validation should never be relied on.

• Ad hoc data validation is difficult, time consuming and errorprone.

• Data::FormValidator provides us with a very straight forward method of validating our form
fields.

• We can useData::FormValidator::Util::HTML to generateHTML::Template fields in our HTML
to contain error messages.

• Data::FormValidator allows us to use our validation expressions to untaint our data.

64 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

In this chapter...
Unlike traditional applications such as word processors, calculators and flight simulators, CGI
programs are not inherently stateful. This means that each request from a client is treated as an
entirely new conversation with effectively no reference toany previous conversation. For static
HTML this stateless situation causes no problem. The serverdoes not care whether the browser
requesting page 3 has previously seen pages 1 and 2.

Dynamic websites, on the other hand, do care about state. It would be terrible if there was only a
single "shopping cart" used by all clients currently talking to the server. It would be impossible to
order just the things you wanted, yet alone correctly handlepayment and shipping for just your
share!

We could try and identify each machine by its IP address, but due to the presence of proxies, network
address translation, and dynamic address assignments thisis rarely a workable solution.

Fortunately, there’s a fairly simple solution. HTTP cookies.

What are cookies?
A cookie is a message given to a web browser by a web server. Thebrowser stores this information
and passes it back to that server each time it requests a page.

The main purpose of cookies is to associate information witha specific browser. The server can then
use this information when making choices such as how to generate and serve content. For example, a
cookie may record a user’s preference in how they want particular elements laid out on the screen.

Uses for cookies
Cookies can be used for all sorts of things. They can be used tohelp gauge how many unique visitors
a site has, and how often those visitors are returning. They can be used to track a user’s movements
throughout your website, or to save a user’s page preferences semi-anonymously. Cookies are used
to store session information for shopping carts and other site-related data.

Cookies might be used to ensure download agreements are seen, allow visitors tobookmarkthe page
of the article they are reading, and to generate bread-crumbs to show the user where else on the site
they’ve been. They can also be used to highlight new content since the user’s last visit.

The use of cookies for some of these things is quite controversial. Most people are happy for their
use for shopping carts, but unhappy about search engines using cookies to collate their search terms,
or for marketing firms to use them for targeted advertising.

Naming cookies
Each cookie is a simple name/value pair, andall the information in a cookie is visible to any user
who wishes to check it. Some browsers can be configured to ask the user if they wish to accept a
particular cookie, and the name of the cookie may influence their decision.

Perl Training Australia (http://perltraining.com.au/) 65

Chapter 9. Cookies and sessions

It is suggested that you give cookies straightforward and easy to understand names. If your cookie
records a user’s preferred style, then call itstyle or preferred_style. This is both friendlier to your
users, and can make your application easier to debug.

Cookie Security
Like all information sent from the web-browser, the user ultimately hasabsolute controlover the
cookies stored on their machine and transmitted to your application. All cookies should be regarded
as user-input, and should be carefully checked and validated before use.

Before using a cookie for any purpose, you should ask yourself whether your application would
break or could be subverted if the cookie’s value was changed. It would be averybad idea to have a
cookie that recorded if the current user had administrativeprivileges; a clever user could simply set
this cookie and bypass your access controls.

Later in this chapter we will discuss how you can use cookies to referenceinformation in a secure
fashion, without revealing that information to the user themselves. This is useful for tracking logins,
privileges, and other information that the user should not be able to see or edit directly.

It should also be noted that cookies are sent to the server with every request, including for images,
javascript files, cascading style sheets, and other content. You should avoid storing large amounts of
information in cookies as they can provide a significant loadon both your server and your clients.
Browsers are not required to accept cookies of more than 4096bytes, or more than 20 cookies per
domain.

You should also remember that some browsers may not support cookies, or may have them disabled.
You should always test that your web application provides a sensible response if cookies are not
enabled, and does not get stuck in an endless redirect or display an unexpected error message.

Generating cookies with CGI::Cookie
Perl comes with a standard module calledCGI::Cookie that allows cookies to be both accessed and
generated. Perl’sCGI.pm module usesCGI::Cookie internally for cookie management. In this course
we will be discussing how to useCGI::Cookie directly, as it is useful in many circumstances when
CGI.pm is not used.

CGI::Cookie allows you to control all aspects a cookie. A complete example is shown below,
although it should be noted that most arguments are optional, asCGI::Cookie provides sensible
defaults. We’ll discuss each option as we progress through this chapter.

use CGI::Cookie;

my $cookie = CGI::Cookie->new(
-name => ’favourite_colour’,
-value => ’blue’,
-expires => ’+1d’,
-domain => ’.perltraining.com.au’,
-path => ’/’,
-secure => 0,

);

Once we have a cookie, we can send it to the browser. Cookies appear as part of the HTTP header.
When usingCGI.pm we can provide an argument to theheader function:

66 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

print CGI->header(-cookie => $cookie);

Multiple cookies can be sent by passing an array reference:

print CGI->header(-cookie => [$cookie1, $cookie2, $cookie3]);

The arguments that can be passed toCGI::Cookie are as follows:

name

Each cookie sent to a client should be given a name which relates to its purpose. For example
session_id, preferences or breadcrumbs. Sending a cookie with the same name as an
existing cookie (for the same site) willoverwritethat cookie. In this way cookies can be
updated or deleted.

value

Cookies can be thought of as key/value pairs. The value contains any information we want to
store in the cookie, which may be preferences, a session hash, the contents of a shopping cart,
or other useful information.

CGI::Cookie supports the setting ofsimplescalars, array references, and hash references using
thevalue parameter:

my %prefs = (
size => ’big’,
colour => ’red’,
texture => ’shiny’,

);

my $cookie = CGI::Cookie->new(
-name => ’preferences’,
-value => \%prefs,

);

For more complex data structures it is necessary toserialisethe structure into a string first. We
can use Perl’s built-inStorable module for this purpose:

use Storable qw(freeze);

my $cookie = CGI::Cookie->new(
-name => ’preferences’,
-value => freeze(\%prefs),

);

expires

Without an expiration time,CGI::Cookie creates a cookie that lasts until the end of the current
session. In almost all circumstances, the session ends whenthe user closes their browser,
although users can always expire cookies early if they wish.

Expiration dates are usually set relative to the current time. For example, a cookie may expire
"one hour from now", or "one day from now". The following format types may be used:

+10s 10 seconds from now
+10m 10 minutes from now
+10h 10 hours from now
+10d 10 days from now
+10M 10 months from now
+10y 10 years from now
now right now
-1y one year ago (already expired)

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Cookies and sessions

Setting an expiry date in the past is the standard way to forcea cookie to be removed from the
browser.

It’s polite to not use overly long expiry times on your cookies without a good reason. If your
cookie is to help record registrations for an event that is happening in a month’s time, then
there’s little reason to keep your cookie for longer than that. If your cookie’s purpose is a
long-term "remember me" function, then it may be sensible toset it to last for years.

A useful trick with cookies is to set a relatively short expiry time (eg, "+10m"), but to send the
cookie on each request. This means that the cookie will expire after 10 minutes of inactivity
from the client, which can be useful if you want a simple inactivity logout for your application.
Unfortunately such cookies will persist (during the allocated timeframe) even if the browser is
closed and re-opened, which may not be desirable for your application. Our chapter on session
management covers this concept in more depth.

domain

The partial or complete domain for which your cookie is valid. The client will pass the cookie
to any host which matches this domain. For example specifying a domain of
.perltraining.com.au will ensure that the cookie is passed to servers on
www.perltraining.com.au, example.perltraining.com.au and
testing.perltraining.com.au.

If we only wished to pass cookies totesting.perltraining.com.au we could provide that
instead as our domain. By default, the domain is set to the same server the cookie originated
from. You can’t set cookies for a domain of which you are not a member.

path

Like the domain, this allows us to restrict the file system path our cookies are passed to. Thus a
path of/cgi-bin/user/ would ensure the cookie was passed to/cgi-bin/user/order.pl but
not to/cgi-bin/admin/delete_order.pl. By default the path is set to/ which will cause the
cookie to be sent with all requests to your server.

"secure" flag

If the secure flag is set, the cookie will only be sent over secure connections using thehttps
protocol. You should keep in mind that theusercan still read the cookie from their browser, and
the cookie may still be stored on their disk in an unencryptedformat.

Fetching cookies
To get the cookie’s sent by the browser, we use thefetch method provided byCGI::Cookie, which
can be called in either a list context (returning a hash), or ascalar content (returning a reference to a
hash):

my %cookies = CGI::Cookie->fetch;
my $cookie_hashref = CGI::Cookie->fetch;

Each cookie in our hash is a fully-formedCGI::Cookie object, howeveronly thename andvalue
attributes are meaningful; all other attributes are set to their default values.

Usingfetch always returnsall the cookies available. Once you have the cookie hash, you can
retrieve an individual cookie from it:

68 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

my $pref_cookie = $cookies{preferences};

my $preferences;
if ($pref_cookie) {

$preferences = $pref_cookie->value;
}

What we would really like is just the cookie. We can useCGI.pm’s cookie method to automatically
fetch a cookie’s value (if it exists).

my $preferences = $cgi->cookie(’preferences’);

If our value had previously been frozen with theStorable module, we’ll also need to thaw it:

use Storable (thaw);

my $thawed_preferences = thaw($preferences);

We can also get a list of all our cookie names, which can be usedto loop through all our cookies in
turn:

my @cookie_list = $cgi->cookie();

foreach my $cookie_name (@cookie_list) {
Do something with $cookie_name

}

Exercises

1. Thewww/cgi-bin/set_cookie.cgi program will emit a simple cookie to your browser.
Navigate there now, as having a cookie already set will help with the later exercises.

2. Thewww/cgi-bin/cookie.cgi program contains some skeleton code. Update it to retrieve alist
of all cookies and display their names.

3. Update the code to also display the cookies’ values.

4. Update the code to allow the user to set cookies based upon the fields provided. Test that this
works.

Sessions
Cookies are a useful feature, allowing information to be kept in the browser itself, rather than being
cumbersomely passed from page to page. However it’s not without its flaws. Cookies can be
modified by the user, making data integrity difficult, and they are inefficient when storing anything
besides from small strings of data.

One way of keeping much of the usefulness of cookies but without the disadvantages is the concept
of usingsessions. Put simply, asession keyor session hashis generated and given to the client as a
cookie. On the server-side, a record is kept of that key and the data associated with it. This keeps the
cookies small, our data secret, and makes it easy to verify whether or not our cookie is valid.

A good session cookie has two important properties. It should be unique for every session, and it
should be randomly generated. The requirement for uniqueness is to make it possible to identify
each individual session, but why the requirement that session cookies should be random?

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Cookies and sessions

The reason is simple. If session cookies contained predictable information, then it may be possible
for an attacker to impersonate another user’s session. By selecting random values from a large
address space (eg, a 128 or 512 bit digest) the odds of an attacker guessing a session key is
vanishingly small. Further security can be added by bindinga session key to a particular IP address
or other browser characteristics.

It’s possible to use sessions without cookies, but doing so involves passing session information
with every link and form submission. This can be a challenging task, especially for a website that
mixes both static and dynamic content and is beyond the scope of this course.

CGI::Session
TheCGI::Session module is available from the Comprehensive Perl Archive Network (CPAN), and
provides an automated way to manage sessions. It provides a highly configurable way of storing
session information, and can be used in conjunction withCGI.pm or with other technologies.

Getting started withCGI::Session is easy:

use CGI;
use CGI::Session;

Create our new session
my $session = CGI::Session->new;

Send our headers (including session cookie)
print $session->header();

There’s a lot happening behind the scenes with our code above, so let’s take some time to examine
what happens in detail.

When we create aCGI::Session object it automatically checks the cookies that were sent bythe
browser. If it finds one namedCGISESSID then it uses that as our session key. If it doesn’t find any
such cookie, then it generates a session key.

Calling $session->header() prints our standard HTTP headers, but also includes the session
cookie. We can pass any arguments to$session->header() that we could pass toCGI.pm’s own
header function.

Once we have our session established, we can useCGI::Session’s param method. This works exactly
like the method of the same name fromCGI.pm, except that instead of getting and setting parameters
passed from the client, it gets and sets parameters in our local session storage area (on our server).

As an example, let’s say that our user had successfully logged in, and we wanted to store that
information:

$session->param(’username’, ’alice’);
$session->param(’fav_colour’, ’blue’);

We can retrieve these details later, provided it’s during the same session. It could be in a different
script, or a different instance of the same script:

my $name = $session->param(’username’);
my $colour = $session->param(’fav_colour’);

70 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

The above code assumes that we’re using a version 4 of CGI::Session, earlier versions required
three arguments be passed into new to specify the data source name, session id and options.

my $session = CGI::Session->new(undef, undef, {Directory=>’/tmp’});

See the documentation for what your version requires.

Saving submissions
A very common use of sessions is to store information submitted previously by the user. For
example, we may wish to remember the user’s favourite colourfor later use. Unfortunately doing
this results in a rather lengthy and somewhat repetitive line of code:

$session->param(’fav_colour’, $cgi->param(’fav_colour’));

Fortunately,CGI::Session provides a way to automate this process:

$session->save_param($cgi, [’fav_colour’]);

We can even store many parameters at once in this way:

$session->save_param($cgi, [qw(fav_colour timezone username)]);

Without a second argumentall parameters are stored:

$session->save_param($cgi);

If we need to ensure that the parameters are saved to disk immediately, we can callflush. Most of
the time this isn’t necessary as the session object should call flush itself when the variable goes out
of scope.

$session->flush();

While it’s certainly convenient to copy all form parameters to our session, it may not be very
wise. Remember that the user can submit any parameters they like, and set them to any value
they want. Blindly copying parameters into our session may overwrite or set parameters that we
hadn’t intended. In almost all cases it’s much better to explicitly list the parameters we want
saved.

Clearing session data
Clearing entries in our session is very straightforward:

$session->clear(’fav_colour’);
$session->clear([qw(fav_colour fav_movie)]);

$session->clear(); # Careful! Clears entire session

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 9. Cookies and sessions

Deleting sessions
If you know a session isn’t going to be used anymore (usually because the user has ’logged out’),
you can delete it:

$session->delete();

This permanently removes the session from the store, this does not delete the cookie.

Exercises

1. Write a script which creates a session and run it. Verify that you receive a cookie from it named
CGISESSID.

2. Create a HTML form which asks for name, age, street name andfavourite colour. Submit this
form to your script and store the submitted values in your session.

3. Print out the current values of the session before changing them to those from the new
submission.

Session expiry
CGI::Session supports the concept of session expiry. If a session goes fora certain period of time
without being used, then it’s consideredstaleand will be cleaned up the next time we try to access it.
This is useful for applications where we want the user to be automatically logged-out after a certain
amount of inactivity. It’s also a way to avoid accumulating sessions which never get cleaned up.

To set the expiry on our session, we can call theexpire method:

$session->expire(’+1h’); # Expires in 1 idle hour

Our code above doesnot say that the session expires in an hour. It expires after anhour of inactivity.
The session itself could last for years provided that the user never spends longer than one hour
between accesses.

It’s also possible to cancel a session expiration, meaning that it will never expire.

$session->expire(0);

One of the nicest features ofCGI::Session is that it’s possible toselectivelyexpire certain pieces of
information. For example, we may want a parameterpayment_auth to expire after only five minutes
of inactivity:

$session->expire(’payment_auth’,’+5m’);

All parameters that aren’t explicitly tagged will expire with the rest of the session.

When a session expires, all the parameters it holds are cleared. This means that setting a
per-parameter expiry time longer than the session-expiry time effectively does nothing; the
parameter will expire with the session, along with everything else.

It is not an error to set a parameter-specific expiry that’s longer than the session expiry. An
example of where this may be useful is when we want to limit a parameter’s lifespan, but don’t
want to care if our sessions are short-lived, or longer-lived "remember me" sessions.

72 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

To expire an session immediately, use $session->delete. To expire a parameter immediately,
use $session->clear(’name’).

Session storage
Unless configured otherwise,CGI::Session stores its sessions in files on the disk, inside your
operating system’s designated temporary directory.

Storing sessions as files works everywhere, but it may not be the best solution for your application. If
you’re dealing with a large number of sessions, then storingthem as individual files can get rather
inefficient. In addition, there are housekeeping issues of having to clean them up.

To learn how to set CGI::Session to work with databases, read the documentation from
perldoc CGI::Session or at http://search.cpan.org/dist/CGI-Session/lib/CGI/Session.pm.

Housekeeping

CGI::Session will automatically clean up expired sessions when they are used. However when a
session expires, there’s a good chance it willneverbe used again; the user has closed their browser,
or gone on to do other things. This can result in an accumulation of expired sessions in storage,
which take up space but which will never be touched again.

CGI::Session could try to do housekeeping every time it’s called, but thatwould involve searching
through all of our stored sessions and cleaning them up. That’s not very efficient if your program is
being run 100 times a second, and every single process is spending considerable time repeating the
same work.

To avoid both of these problems,CGI::Session has separate housekeeping functionality. Now we
can do our housekeeping at scheduled intervals (for example, every hour), and with a minimum of
impact to client queries.

The housekeeping provided byCGI::Session is invoked by using itsfind class method. This walks
through all the sessions, and executes code for each. At the most basic level, we can clean all our
expired sessions using:

CGI::Session->find(sub {});

That code walks through all our sessions and doesnothingwhen it encounters each one, so how does
it help? Well, before our subroutine is called,CGI::Session loads the session, and if it’s expired, it
removes it. So just by gettingCGI::Session to examine everything, we get what we need.

We can also use this functionality to gain information aboutactive sessions, or to even change them!
The subroutine passed tofind receives a fully-formedCGI::Session object each time it is called. So
if we wanted to flag all our currently logged-in users for a prize-draw, we could do something similar
to the following:

CGI::Session->find(\&prize_draw);

sub prize_draw {

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 9. Cookies and sessions

my ($session) = @_;

Skip expired sessions
next if $session->is_empty;

Set prize-draw flag
$session->param(’prize_draw’, 1);

Make sure our changes are flushed to storage.
$session->flush;

}

If you’re using a store other than the default disk store you’ll also need to tellfind where to locate it.
CGI::Session’s documentation provides further information on how to do this.

As of CGI::Session 4.14, the find functionality is considered experimental. It is mentioned in
these notes because it is extremely useful for housekeeping purposes, but you are strongly
recommended to read the documentation for your installed CGI::Session module in case the
syntax or semantics have changed.

Sessions and HTML::Template
CGI::Session works very nicely withHTML::Template. Because our session objects have aparam

method, we can associate them with a template and have fields automatically filled based upon our
session information. The following code fills a template with information stored in our session, and
then sends the filled template to the user:

my $session = CGI::Session->new;

my $template = HTML::Template->new(
filename => "example.tmpl",
associate => $session,

);

print $session->header;
print $template->output;

Exercise

1. Create aHTML::Template with tags for the name, age, street name and favourite colourfrom
your previous script. Use the session object to fill these values in for each submission.

Chapter summary

• Cookies are small pieces of information given to the client by the server. These cookies are
returned to the server with each request, allowing some state information to be kept.

74 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

• Users can edit their cookies, thus it is important to ensure that important data is verified.

• We can create cookies usingCGI::Cookie.

• Sessions are created by giving clients unique ids and then storing relevant information for that id
on the server.

• CGI::Session allows us to create, work with and expire sessions.

• If desired, we can associateHTML::Template objects withCGI::Session objects like we can with
CGI.pm objects.

Perl Training Australia (http://perltraining.com.au/) 75

Chapter 9. Cookies and sessions

76 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

In this chapter...
In this chapter we’ll introduce you to a powerful and integrated approach to web development.
HTML::Mason provides a logical, high-level interface to web development making dynamic and
semi-dynamic websites quick and easy to build.

Problems with classical CGI
There is a lot that can be done with classical CGI. Particularly once you start using some of the
excellent helper modules such asHTML::Template. HTML::FillInForm andData::FormValidator.
However CGI still has a number of significant drawbacks.

CGI scripts typically map one HTML page per CGI program. Now each of those pages may have
many logical parts: headers, footers, bread-crumbs, a search box, navigation, and actual content.
This means that every CGI program ends up doing a lot of extra work (generating these other page
parts) before it can do it’s real task. Even if we put this generation into subroutines, we still need to
make sure that each subroutine is called.

This lack of conceptual division of page elements, means that every CGI program is generating each
page part, and must therefore handle the data for each template in the hierarchy. This leads to
duplication across both code and templates. It also can leadto massive code rework when another
page element is created.

This penalty for small changes often leads to CGI scripts falling behind the main website when
look-and-feel changes occur. Even when they don’t, due to the difficulty for non-programmers to
understand CGI scripts, the programmers are constantly asked to make minor adjustments to ensure
the pages look "just right".

Finally CGI scripts are often hosted on a separate (CGI-enabled) part of the web server. This means
that making a website more dynamic may mean moving all of it into cgi-land, even when the only
desire is to integrate something simple, such as a stock-report.

Due to these reasons and more, there have been a number of improvements and CGI replacements.
In this second half of this course, we’ll look at one replacement called HTML::Mason.

What is Mason?
Mason is a free, open-source, cross-platform web development environment, written in and
supported by the Perl programming language. Mason’s basic features can be used without any Perl
knowledge as well, but to use Mason at full-strength an understanding of Perl is essential.

Mason’s preferred environment is running under mod_perl inside the Apache web-server, where it
makes use of numerous optimisations to enhance performance. Mason can also be configured to run
under other environments (including IIS), operate as a standard Common Gateway Interface (CGI)
program, or work in a non-web environment entirely.

For information on how to setup and administer Mason read Appendix A.

Perl Training Australia (http://perltraining.com.au/) 77

Chapter 10. Introduction to HTML::Mason

Mason vs traditional CGI
Traditional CGI programs are code with embedded HTML. In good programs the HTML is
abstracted into templates and external files, but program execution still fundamentally follows the
code, which then decides what HTML to generate.

Mason takes this model and flips it over. Mason sites consist of HTML that may contain embedded
code. This means that a Mason file layout often exactly mirrors the site layout, which can make
management significantly easier. Indeed, converting a static website to a Mason website is often a
very straightforward process.

When Mason is used, it is normally enabled forall directories, or all files with a.html extension.
This is the reverse of traditional CGI programs that are usually confined to a single directory.

A sample page
Unless otherwise designated, Mason pages are plain HTML:

<html>
<head>
<title>My First Mason Page</title>
</head>
<body>
<p>This is my first Mason page.</p>

<!-- This following line displays the result of a calculation. -->
<p>2 + 2 = <% 2 + 2 %> </p>

</body>
</html>

Of particular interest to us is the snippet containing the tags<% 2 + 2 %>. The special<% %> tags
indicate that a Perl expression should be evaluated, and theresult placed into the page at this point.
This is commonly used to substitute variables, for exampleHello <% $name %>.

Component Basics
Mason’s basic unit is a component. This is a piece of HTML, possibly including Perl code, which
generates a page or part of a page. In many cases you will have one component per page, but in other
cases you may choose to call multiple components which each generate a small part of the final page.

An example component could be as simple as:

<p>Hello World!</p>

without any code at all. Of course, our components can also contain Perl code. We’ve already the
uses of<% expr %> to evaluate and display the results of an expression, but we can also embed
regular Perl code as well:

% my @friends = qw(Paul Jacinta Damian Kirrily);
% my $random_friend = $friends[rand @friends];

<p><% $random_friend %> says "Hello World!"</p>

78 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

In the code above, a line beginning with a percent character (%) tells Mason to interpret that as a full
line of code. The% mustappear as the first character on the line, in all other locations it’s considered
just another character.

If we have a lot of Perl that we want to execute, we can use a special <%perl> block:

<%perl>
my @friends = qw(Paul Jacinta Damian Kirrily);
my $random_friend = $friends[rand @friends];
</%perl>

<p><% $random_friend %> says "Hello World!"</p>

We can freely intermix Perl and HTML, which is especially useful in looping constructs and other
areas of HTML generation:

<%perl>
my @friends = qw(Paul Jacinta Damian Kirrily);
my $random_friend = $friends[rand @friends];
</%perl>

<p>My friends include:</p>

% foreach my $friend (@friends) {

<% $friend %>
% }

<p><% $random_friend %> says "Hello World!"</p>

Exercises

1. You can find the above code inwww/friends.html. Update the list with your own friends, and
verify the generated HTML code changes accordingly.

2. Modify your code to also display the number of friends you have. (Hint: You can find the size an
array withmy $num_friends = @friends).

Calling components
One of Mason’s great strengths is that it’s possible to call components from other components. In
this way we can create reusable snippets of code and HTML thatcan be embedded into multiple
locations. We can consider Mason components to be similar toPerl’s subroutines.

An example of a commonly used component is that of site navigation. We can write a component
callednavigation.mhtml, which may just contain static HTML:

<ul id="navigation">
Home
Specials
Fun and Games
Contact Us

We can now include this component to provide navigation on our pages:

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 10. Introduction to HTML::Mason

<html>
<head><title>My Example Page</title></head>
<body>
<!-- Here’s our navigation -->
<& navigation.mhtml &>
<!-- Here’s our content -->
<p>Welcome to my example page!</p>
</body>
</html>

The<& navigation.mhtml &> tag calls the specified component and includes its content. We can
call our components anything we want; our component could just as easily be namednav.mhtml if
we wanted a shorter filename.

Components in other directories can be called by prepending the path:

<& ../shared/todays_weather.mhtml &>

The component root
All Mason components must live inside a directory hierarchy. The top level of this hierarchy is
known asthe component root. It is impossible to access components that live outside thecomponent
root. This provides an extra level of security (arbitrary files cannot be executed), and also allows
Mason to perform a number of optimisations.

When Mason receives a request, it maps the request onto the filesystem by adding the component
root to the start of the path. For example, a request for/chickens/dorkington.html and a
component root of/var/www/my-mason/ would result in Mason looking for a file with an absolute
path of/var/www/my-mason/chickens/dorkington.html.

Filename conventions
When working with Mason, it is common to use a number of filename conventions. These have the
advantage of making it easier for developers to quickly determine the use of a component, and also
allowing rules to be specify to the web-server regarding theserving of content.

Throughout these notes we will use the following filename conventions, which we also suggest for
your development and production sites:

.html

Either plain HTML, or aHTML::Mason file designed to be rendered to a browser. These may be
referred to astop-level components, as they often contain an aggregation of smaller components
to do their work.

.mhtml

A Mason component that produces HTML output, but which is designed to be called from
another component, rather than displaying directly to a browser. Examples include navigation
bars, weather displays, shopping cart summaries, and othercomponents that may be included in
a larger page.

80 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

.mpl

A mason component that produces no HTML output, but instead performs calculations and/or
returns information to the calling component. In general weprefer the use of Perl modules to
perform these tasks, but it may be appropriate under some circumstances to have Mason
components that fulfil a similar role.

.cgi

A traditional CGI script.

Exercises

1. We’ve already written anavigation.mhtml file for you. Edit your existingfriends.html to call
the navigation component.

Chapter Summary

• Mason is a web development environment written in Perl.

• Mason’s basic unit is the component.

• Components represent a logical part of a website.

• Components can call other components to build up a full page.

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 10. Introduction to HTML::Mason

82 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

In this chapter...
We’ve examined some of Mason’s basic features for generating dynamic content, and the basic use
of components to build more sophisticated pages. However none of our pages accept form
submissions, and none of our components take any arguments.In this chapter we’ll cover Mason’s
argument handling features.

Form processing
Mason has a very straightforward way of processing arguments to forms. Any component can have a
<%args> block, which specifies what arguments may be passed to the form. Let’s see a simple
example:

<%args>
$name => ""
</%args>

% if ($name) {
<p>Hello <% $name %></p>

% }

<form method="post">
Your name:
<input type="text" name="name" />
<input type="submit" />
</form>

In our component above, we accept a single scalar argument$name, which has a default value of the
empty string. When our form is submitted (by default back to the same page), then if$name contains
a true value we display a bold message greeting that person.

Variables declared inside an<%args> block are lexically scoped (usingmy) for the entire component,
and are automatically populated using form-submission variables of the same name. The<%args>
block can appear anywhere in the component. It’s not uncommon for <%args> to appear after the
HTML in a component, which can make it easier when the HTML is written by non-programmers.

We can specify many arguments if required, and they need not all have defaults. It’s also possible
embed blank lines and comments into<%args> blocks. The following block provides a default
$name, but requires that both$age and$address be passed:

<%args>

While our users may not give their name, we
require their name and address.

$name => "anonymous" # optional field
$age # required field
$address # required field

</%args>

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 11. Component Arguments

Mason considers it a fatal error if an argument without a default is not supplied. It is highly
recommended that any component wishing to use submitted form inputs supplies defaults to all
of its arguments. You can and should always provide your own argument validation code.

Multiple form values
It’s very common for forms to have multiple elements with thesame name. For example, the
following provides a list of favourite colours that the usercan select. The resulting form input may
have no colours selected, all of them selected, or anything in between.

<p>Favourite colour (tick all that apply):</p>

% foreach my $colour (qw/red blue green cyan black/) {
<input type="checkbox" name="fav_colour" value="<% $colour %>" />
<% $colour %>

% }

The simplest way to accept multiple form inputs with the samename is to use an array in our
<%args> block:

<%args>
@fav_colour => ()
</%args>

We now have access to our submitted data (if any) using the@fav_colour array.

It should also be noted that we could have used a scalar variable:

<%args>
$fav_colour => []
</%args>

However this isnot recommended. Mason will populate$fav_colour with an array reference if it
receives two or more values, but will use a simplestring if only a single value is received. Trying to
determine if$fav_colour contains a reference or a string will just add needless complexity to our
code.

This demonstrates the importance of checking our arguments. Since our form submissions can
receiveanynumber of arguments, we should never rely upon a scalar argument containing only a
simple string.

We can force an argument to be a string or number with the following code:

ref($name) and die "name must not be a reference";

Exercises

1. The filewww/form.html contains a simple form. Modify it to take arguments using an<%args>

block and display the results in the designated area.

84 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

The %ARGS hash
Mason provides another way of processing arguments, and that’s via the%ARGS hash. Inside a
component,%ARGS contains a complete list of arguments that were submitted. Using%ARGS is
particularly valuable when you expect a large or indeterminate number of arguments to your
component, or you have form submissions that contain field names that cannot be valid Perl variable
names. This may occur if you’re using an image-input elementthat submitsname.x andname.y
fields to your component.

It’s perfectly acceptable to use both an<%args> block and the%ARGS hash at the same time. For
example, the following snippet of code would populate extravariables from an image-input
submission:

<%args>
$name => ""
$address => ""
</%args>

<%init>

These inputs would be generated from a HTML tag such as:
<input type="image" name="button" src="button.png" />

my $button_x = $ARGS{’button.x’};
my $button_y = $ARGS{’button.y’};

</%init>

<p>
Hello <% $name %> of <% $address %>, you clicked the
image at <% "($button_x,$button_y)" %>.
</p>

Another good example of using%ARGS is when we wish to validate our data using
Data::FormValidator. We can simply pass through the entire%ARGS hash:

<%init>
use Data::FormValidator;
my $results = Data::FormValidator->check(\%ARGS, \%profile);
</%init>

% if ($results->has_invalid or $results->has_missing) {
% # Re-display our form, giving it our results
% # to allow for better feedback.

<& form.mhtml, results => $results &>
% } else {

<p>Thank-you for your submission!</p>
% # Do something with our form submission.
% }

Exercises

1. Modify yourwww/form.html file to perform validation on the submitted fields. If validation
fails, then display theform_error.mhtml component instead of your submission results.

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 11. Component Arguments

Calling components with arguments
Argument handling is a straightforward and easy way to manage form submissions in top-level
components, but its usefulness extends far beyond managinguser input. We can also call Mason
components and pass them arguments. For example, let’s pretend that we have a component that
retrieves and displays information about a book, given the ISBN, and also takes an optional discount:

% # display_book.mhtml
<%args>
$isbn
$discount => 0
</%args>

<% $book->title %>, $<% $book->price %>

% if ($discount) {

<i>Just $<% $book-price * (1 - $discount/100) %>
including your <% $discount %>% discount!</i>

% }

<%init>
use Local::Book::Catalogue;
my $book = Local::Book::Catalogue->new($isbn);
</%init>

We can now call our component with arguments like so:

<& display_book.mhtml, isbn => ’0596001738’, discount => 20 &>

and we could expect this to display:

Perl Best Practices, $75

<i>Just $60 including your 20% discount!</i>

This also demonstrates why we may wish to have arguments blocks that do not always include
defaults. It would be an error for us to ever call this component without specifying an ISBN, and as it
is not a top-level component there should be no risk of it being called directly by a user.

Component calls with arguments also introduces the conceptof being able to passhashesas
arguments, as well as scalars and arrays:

% # user_details.mhtml
<%args>
$name
$address
@hobbies
%telephone
</%args>

We could then call this component like so:

<& user_details.mhtml,
name => "Bruce Wayne",
address => "123 Bat Ave",
telephone => {

home => "555 1234",
work => "555 4567",
mobile => "04 BAT PHONE",

},
hobbies => ["chess", "electronics", "fighting crime"],

&>

86 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

It should be noted that we always passreferencesto arrays or hashes to our components, just like we
would if we were calling regular Perl subroutines. I

Although the content of an <%args> block looks like Perl code, it isn’t. Each variable definition
must be on a single line and lines do not end with semi-colons (;). Perl expressions are allowed,
including those that refer to previous arguments.

Exercises

1. Thejoke.mhtml component takes two arguments,joke andpunchline, and uses some simple
javascript to display them. Call it now from one of your components, passing in the details of
one of your favourite jokes.

2. Write your own component that takes a number of arguments (your choice) and formats them.
Call this component from another component.

3. If you have time, modify your component so that one of its arguments is a list of values, and
display the contents as an itemised list.

Chapter summary

• We can specify component arguments in the<%args%> block.

• Scalar values in our<%args%> block will contain array references if there were multiple values in
the form by that name.

• The %ARGS hash gives us direct access to all of our arguments.

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 11. Component Arguments

88 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

In this chapter
In this chapter we will explore one of Mason’s most powerful features, theautohandler.
Autohandlers allow for broad modifications to be applied to content and components, such as the
addition of navigation and style information. They may alsobe used for more advanced operations
such as access controls.

Before we discuss autohandlers, we’ll examine some of the reasons why a broad way of modifying
or controlling content is essential to creating a maintainable website.

Consistency
The cornerstone of any good website is a consistent look and feel. Every page should have the same
layout, navigation, and style; or it should differ from the norm in well-defined ways. Users are
almost always looking for your content, and don’t want to have the extra problems of dealing with
changing navigation and layout.

Cascading Style Sheets (CSS) provide an excellent way to define how a site should look and behave.
While an in-depth discussion of CSS is beyond the scope of this course, the correct use of CSS can
significantly increase the maintainability of any website.

However even with the use of style-sheets there are still HTML elements that need to appear on
every page. These can be logos, navigation menus, copyrightinformation, and everyday structure to
ensure that content appears where it should. When we want to update one of these elements, we need
to do so for every page in our site. That’s a real drag!

Luckily, Mason provides a system to elegantly solve the consistency problem. Put simply, whenever
a page is called, a special component known as theautohandler has an opportunity to act first. Most
autohandlers simply take the output of a page and wrap it in a set of standard headers and footers.
This means that individual pages need to only containcontent.

Let’s see an example autohandler now.

<html>
<head>
<title>Ascidian Central</title>
<link rel="stylesheet" type="text/css" href="/style.css" />
</head>
<body>
<h1>Ascidian Central</h1>

% $m->call_next;

</body>
</html>

In the above code, we output some headers, and a title and finish up with some footers. In the middle
we have a strange line:$m->call_next. This tells Mason to call the next item along in our chain,
which will either be another autohandler or the final requested component.

Perl Training Australia (http://perltraining.com.au/)
89

Chapter 12. Autohanders

By storing our header and footer in a component which is called automatically, we reduce the
likelihood that a wrong header or footer component is calledor that an important component is
forgotten.

We also limit the scope of changes to our invariant sections to one file, regardless of whether we’re
adding a new navigation bar, further copyright sections or removing something.

The execution chain
When a Mason component is requested the following steps takeplace:

1. Mason checks to ensure the requested component exists. Ifit does not then Mason uses the
dhandler (default handler), which is covered later in this course.

2. Mason opens the requested component and checks to see if there are any special inheritance
directives.

3. If there are no special inheritance directives, Mason looks in the same directory as the
component for anautohandler file. If there is a special inheritance directive, Mason follows
that instead. We’ll examine this in more detail later.

4. Mason then walks up the directory structure looking for further autohandlers.

5. Each autohandler is then executed in turn from top most to bottom most, followed by the
component and any components it includes.

call_next
In the above example we use$m->call_next to call the next item in our chain, which is often the
page component itself, but could be another autohandler in our chain.

Let’s assume we have the following three files:

autohandler
===========

<html>
<head>
<title>Ascidian Central</title>
<link rel="stylesheet" type="text/css" href="/style.css" />
</head>
<body>
<h1>Ascidian Central</h1>

% $m->call_next;

</body>
</html>

cold_water/autohandler
======================

<!-- Begin section -->
<h2>Cold water varieties</h2>

% $m->call_next;
<!-- End section -->

90 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

cold_water/sea_tulips.html
==========================

<!-- Begin content -->
<p>
Sea Tulips are sessile filter feeders found in coastal waters at
depths up to 80m. Their name derives from their appearance a
knobbly ’bulb’ attached to a long ’stalk’. The colouration of Sea
Tulips depends upon their association with a symbiotic sponge that
covers their surface.
</p><p>
Despite their name Sea Tulips are animals, not plants.
</p>
<!-- End content -->

We’d access our sea tulips’ content by navigating to
http://our.url/cold_water/sea_tulips.htmlwhich would build the following html:

<html>
<head>
<title>Ascidian Central</title>
<link rel="stylesheet" type="text/css" href="/style.css" />
</head>
<body>
<h1>Ascidian Central</h1>

<!-- Begin section -->
<h2>Cold water varieties</h2>

<!-- Begin content -->
<p>
Sea Tulips are sessile filter feeders found in coastal waters at
depths up to 80m. Their name derives from their appearance a
knobbly ’bulb’ attached to a long ’stalk’. The colouration of Sea
Tulips depends upon their association with a symbiotic sponge that
covers their surface.
</p><p>
Despite their name Sea Tulips are animals, not plants.
</p>
<!-- End content -->
<!-- End section -->

</body>
</html>

Exercises

1. There is already awww/autohandler. Modify it to display a tagline, copyright notice, or other
text at the bottom of each rendered page.

2. Modify thewww/autohandler to include your navigation component on each page. You may
also make any other site-wide modifications if you wish.

3. Create an autohandler inside yourwww/products directory that displays a simple title, or title
and footer. Verify that pages inside theproducts directory contain this extra information, and
those on the rest of your site do not.

Perl Training Australia (http://perltraining.com.au/) 91

Chapter 12. Autohanders

Methods
Our new website is great! It’s easy to add new content, and it’s easy to change our layout and design.
However, there is still one problem that can be seen. The title on all of our pages remains static.

Ideally, we’d like to have a way to query our content for information such as titles, keywords, access
controls, and other per-page specifics. In Mason this is easyto do by usingmethods.

Methods are attached to a component, but can be called from anywhere. They allow components to
provide extra services. It’s also possible to attach methods to autohandlers, providing a "default"
method when no specific method exists on the component itself.

Calling methods is very similar to calling components:

<& /path/to/component:method &>

We could call thetitle method on ourindex.html component as follows:

<& index.html:title &>

Of course, in our autohandler our requested component will be different for each request. Luckily,
Mason provides us with a shortcut. The special componentREQUEST always refers to our current
request:

<& REQUEST:title &>

We’re more likely to see this embedded inside<title> or <h1> tags, like this:

<title><& REQUEST:title &></title>

Now that we know how to call a method, we need to know how to write them. Creating a method is
done using a special<%method> block:

<%method title>
Example title
</%method>

Our method can contain any valid Mason code, and can also takearguments, and do anything else
that a normal component can do.

Exercises

1. Modify yourwww/form.html page to include atitle method that returns a static title.

2. Modify yourwww/autohandler to call thetitle method on the requested component and
display at the top of the page in<h1> tags.

3. Modify your autohandler also insert the title in between the<title> tags in the<head> block.

4. What happens if you try to browse to a different page that has notitle method? We’ll learn
about this more in the next section.

Default methods
Methods are fantastic when they exist, but attempting to call a method that does not exist results in a
fatal error from Mason. It’s a lot of work to add methods to every component in our site, especially if

92 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

our site is very large. Worse still, we may end up duplicatingmethod code if we want many of our
methods to work the same way.

Fortunately, we don’t need to go to quite so much effort, as methods can beinheritedfrom
autohandlers. If we can’t find a method on a component, then welook at its autohandler instead. If
it’s missing the method, we look at the autohandler’s autohandler. This continues up the chain until a
method is found, or we run out of autohandlers and an error is generated.

The great advantage of this inheritance is that we can provide a single method in our autohandler,
and simply override it as needed for each individual component.

Exercise

1. Modify yourwww/autohandler to provide atitle method that contains a default title.

2. Verify that your title default title is used on pages missing their owntitle method.

3. Now add atitle method to thewww/products/autohandler file. What happens to the title of
content inside that directory?

Attributes
Closely related in concept to methods are that of componentattributes. Just like methods, attributes
can be set on components, and just like methods they can be inherited from autohandlers. However
attributes are much simpler than methods, as they’re just static data.

Attributes in Mason are set using a<%attr> block:

<%attr>
name => "Bonsai Car BBQ"
price => 99.95
show_navigation => 1
categories => [’outdoor’, ’floral’, ’automotive’]
</%attr>

Note that attributes in Mason are just simple key/value pairs, and can contain any type of scalar data,
including complex data structures. Attributes are declared one per line, and there are no additional
commas as you would find if you were declaring a hash.

In order to access attributes, we need to query our components. To do this we first need access to our
component object. One of the most commonly used components is that of our request itself:

<p>The price is $<% $price %></p>

<%init>
my $comp = $m->request_comp;
my $price = $comp->attr(’price’);
</%init>

We can also skip loading our component into a separate variable:

my $price = $m->request_comp->attr(’price’);

We can also fetch any component on our system:

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 12. Autohanders

my $comp = $m->fetch_comp(’/path/to/comp.mhtml’);
my $price = $comp->attr(’price’);

Trying to fetch an attribute that does not exist will result in an exception, which unless caught
will halt your component and signals an error to the Mason interpreter. To tell Mason it’s okay if
an attribute does not exist, we can use the attr_if_exists method:

my $categories = $comp->attr_if_exists(’categories’);

attr_if_exists returns the undefined value if the attribute does not exist.

Keep in mind that attributes can only ever contain static content. If you need to generate
something dynamically, either from calculation, or looking it up in a database, or through other
means, you’ll have to use a method.

It’s easy to think that attributes are perfect for things such as page titles, and for simple sites
they are. However on complex sites the titles may be dynamically generated, and if you’re using
attributes you’ll find yourself having to rewrite some of your site.

You can have the best of both worlds by providing a default method that simply performs an
attribute lookup, which allows individual components to override that and supply their own
dynamically generated methods when needed:

<%method title>
<% $m->request_comp->attr_if_exists(’title’) || "My Homepage" %>
</%method>

Changing autohandler inheritance
In most circumstances we want our components to inherit fromtheir default autohandler, but there
will sometimes be circumstances where we do not want this to be the case. One such example is
generating non-HTML pages in Mason. We don’t want our plain text file or our cascading style sheet
to inherit from an HTML-centric autohandler, although we may wish to use Mason to generate those
pages.

Another common example where we want to use a higher-level autohandler is inindex.html files in
subdirectories. If we have a directory filled with books, then theindex.html is likely to be the only
page that isnot a book, and therefore requires an exception to our special book formatting.

Luckily, changing our autohandler is easy. Mason has a special <%flags> block, which allows us to
modify component behaviour. The only key that is presently defined for<%flags> is inherit, which
allows us to specify a new location for the autohandler:

<%flags>
inherit => /some/other/autohandler
</%flags>

94 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

If we setinherit to the special value ofundef, then our component will execute without an
autohandler at all.

<%flags>
inherit => undef
</%flags>

Exercises

1. Modify thewww/products/index.html file to inherit directly from the top-level autohandler.

2. Check that your newwww/products/index.html page contains only the top-level autohandler
details. Ensure that other pages in that directory continueto use the normal inheritance chain.

Autohandlers for access-control
Autohandlers aren’t just good for layout, they’re useful for access control as well. Let’s pretend that
we have a ’members only’ section of our website, and require that members login before granting
access. Rather than having to worry about access control on each of our pages, we instead place our
members only pages into their own directory, with an autohandler at the top:

% # File: /members/autohandler
%
% if (member_is_logged_in()) {
% $m->call_next;
% } else {

<& login.mhtml &>
% }

Our autohandler simply does whatever work is needed to determine if the user is logged in. If they
are, then we display the content as normal, and if not we display thelogin.mhtml component, which
should display an appropriate message or login page.

Note that our autohandler contains no other formatting or special mark-up. Because our members
autohandler is automatically invoked by the top-level autohandler, we know that layout and
navigation is already managed for us.

Chapter summary

• Autohandlers allow us to provide consistency to our websites.

• All autohandlers from parent directories are also used.

• We can use methods to specify information like page titles.

• Default methods (in the autohandler) allow us to avoid errors from missing component methods.

• Attributes are static data which a component may have.

• We can change our autohandler inheritance, although this israrely useful.

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 12. Autohanders

96 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

In this chapter...
We’ve seen how Mason sites are built up from components, and we have already used a number of
their special features. In this chapter we’ll be taking an in-depth look at components and their
capabilities.

Special Globals

$m
Mason’s special variable$m contains theHTML::Mason::Request object. The allows us to to retrieve
information on the current request, call other components and affect the flow of execution.$m always
exists when using Mason.

You can read more about$m by usingperldoc HTML::Mason::Request.

$r
When Mason is running undermod_perl, $r contains the Apache request object. This variable
provides access to the full Apache API, thus allowing us to set HTTP headers, send messages to the
Apache logs and access configuration information. Readperldoc Apache::Request to find out
more.

It should be noted that$r onlyexists when running undermod_perl, or something that emulates a
mod_perl environment. It’s considered good practice to try and separate code that uses$r from the
rest of your code, to make components easier to re-use and test.

%init and %cleanup blocks
One of the most commonly seen special-purpose blocks is the<%init> block. Conceptually, the
<%init> block is identical to a<%perl> block at the start of your component. So why do they exist,
and why are they so useful?

It’s very common for a component to require some sort of initialisation. It needs to load modules,
calculate values, perform queries, validate input, or otherwise perform setup. We could just put this
at the top of our component, but doing so would make it harder for a casual reader to identify the
component’s primary purpose.

An <%init> block means we can move our initialisation code to thebottomof our component. This
means that when we open our file we immediately see what makes it interesting and unique. In fact,
our component could look and feel just like a regular HTML file, except for the<%init> block down
the bottom. This makes our componentsmuchmore friendly to non-programmers who may need to
edit or change the HTML.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Components in depth

Even though our<%init> block may be at the end of our component, it still acts as if it were at the
top. Any variables declared in the<%init> block can be seen throughout the whole component.
Here’s an example:

<p>
Hello <% $name %>! Today is <% $weekday %>, the
<% $day %> of <% $month %>.
</p>

<%args>
$name => "anonymous"
</%args>

<%init>
use POSIX qw(strftime);
my @today = localtime();
my $weekday = strftime("%A",@today); # Monday/Tuesday/...
my $day = strftime("%e",@today); # 1..31
my $month = strftime("%B",@today); # January/February/...
</%init>

Mason also has a<%cleanup> block, which is just like having a<%perl> block at the veryendof
your component.<%cleanup> blocks are much more rarely seen, since they don’t have the same
stylistic advantages of moving code away from the top of yourcomponent.

It should also be noted that<%cleanup> blocks arenot guaranteed to run before your component
exits. If your component explicitly usesreturn, die, issues a redirect, or otherwise halts execution,
then your<%cleanup> block may never get run.

%doc blocks
Documentation is important in any program, but it’s particularly important in large projects. It’s
always possible to add documentation to a Mason program by using standard Perl comments:

<%perl>
This is a comment!
my $price = 10.95; # This is also a comment
</%perl>

<p>The price is $<% $price %>.</p>

% # This line is also a comment.

We could also use HTML comments:

<!-- This is an HTML comment -->

however those comments will be transmitted to the browser. While they can be useful to mark
sections of code to ease in debugging, or mark authorship, they arenot recommended for regular
program comments. Your users may be able to read how your website works, and you’ll needlessly
increase the amount of data that you need to transmit to clients.

Perl’s standard comments are great for short notes, but theyrapidly become unwieldy when working
with large amounts of documentation. To solve this, we can use a<%doc> block. Anything inside a
<%doc> section is considered a comment, and is ignored by Mason:

98 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

<%doc>

Ice-cream flavour component. More than 50 flavours!

Written by Paul Fenwick <pjf@perltraining.com.au>, August 2006

Usage: <& ice_cream.mhtml, flavour => "chocolate", scoops => 2 &>

</%doc>

If you’re familiar with POD (seeperldoc perlpod) then you can embed this into your<%doc>
sections to haveperldoc browsable documentation:

<%doc>

=head1 NAME

ice_cream.mhtml - Ice cream with more than 50 flavours!

=head1 SYNOPSIS

<& ice_cream.mhtml, flavour => "chocolate", scoops => 2 &>

=head1 AUTHOR

Paul Fenwick <pjf@perltraining.com.au>, August 2006

=cut

</%doc>

Avoiding work with %once
Mason components are similar to subroutines. They run, do their work, and clean up afterwards.
However this can be inefficient if we’re calculating the sameinformation every time, particularly if
that information is expensive to compute.

A <%once> block evaluates when the component is first loaded,beforeany requests. The most
common use of<%once> blocks is to create persistent lexical variables. Variables declared in a
<%once> block are visible in the main component, as well as its subcomponents and methods and
don’t get cleaned up when the component has finished.

Code inside a<%once> block isn’t run as part of a request. This means that you cannot use$r or $m.
It also means that you should not do anything that cannot survive afork; including connecting to a
database or other application.

However wecanuse a<%once> block to prepare for a persistent database or other connection later
on:

<%once>
This creates our $dbh variable, but doesn’t initialise it.
However because it’s declared in the %once block, it will
continue to live between requests.

my $dbh;
</%once>

Perl Training Australia (http://perltraining.com.au/) 99

Chapter 13. Components in depth

<%init>
use DBI;

We may already have a database connection from a previous
component call. If we don’t have a connection, or it’s
not responding, then make a new connection.

unless ($dbh and $dbh->ping) {
$dbh = DBI->connect(...);

}
</%init>

Component internals: other named blocks
There are a number of other special Mason blocks. These are mentioned below.

%def

Used to create sub-components. These are like methods, but they can only be called from the
containing component.

%filter

Used to filter the output of a component. We’ll cover this morein a later chapter.

%text

Used to provide output which isnot parsed by Mason. This is typically used to provide Mason
examples.

%shared

Variables created in the %shared block exist both in the component body and also in any
subcomponents and methods. The contents of the %shared block run before the main
component, its methods and subcomponents and may do initialisation. Unlike the %once block
it runs once for each request.

Escaping content
As a programmer, generating HTML and URLs has a particularlyannoying requirement. You have
to make sure that everything is properly encoded in order forthings to work. For example, in HTML
a less than character (<) should be replaced with:< and in a URL each space character is
replaced with a plus (+).

Having to remember the encodings can be a real headache, and forgetting to encode can result in
broken links, mis-formed HTML, or even the possibility of cross-site scripting attacks (see the
chapter on security for more information). Fortunately, Mason takes much of the pain out of this by
allowing you to escape your content as appropriate on it’s way out. Thus we can write:

<p>Hello <% $name |h %></p>

<p>Your personalised page can be found
<a href="http://example.com/user/<% $name |u %>">here</p>

100 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

The use of|h indicates that the result of our expression should be HTML escaped. The use of|u
indicates it should be URL escaped.

It’s possible to configure Mason toalwaysapply (usually HTML) escaping to<% %> expressions.
This provides a safety net when datacouldcontain characters that need escaping. In these
environments you can use|n to disable escapes. Specifying|n when no default escapes are used has
no effect.

It’s a good habit to always specify the escaping scheme that should be used for expressions.
This ensures your output is always formatted the way you want, regardless of your operating
environment. It also means you need to think about how each piece of data is used before you
emit it, which will help avoid bugs and potential security flaws later on.

Exercises

1. Create variables containing: an email address, a url, thename of a company which includes
some punctuation characters.

2. Interpolate these into your component output using appropriate escapes.

Escaping by default
In some cases you may find that you need to escape everything you generate before it sent out as
output. You can achieve this by setting the configuration variabledefault_escape_flags to h or u as
appropriate.

If the default_escape_flags variable is set and you wish to avoid escaping some given output, you
can use the|n encoding flag, which applies no escaping. Then encoding can be combined with the
other filter options so that|nh turns of any default encoding and turns on HTML encoding, while
|nu does the same for URL encoding.

Creating your own escapes
Mason allows you to create your own escape filters. This is an advanced concept, but a very powerful
one.

Let’s say that your site regularly displays amounts of money, and you’d like to be able to round these
with two decimal places ($2.00 instead of just $2, or $1.50 instead of $1.4999). We can use Perl’s
sprintf function to do this:

sprintf("$%.2f", $price);

however this is cumbersome to write frequently, and annoying if we want to change our currency
formatting in the future, perhaps by adding commas ($1,234.00 vs $1234.00) or even performing
conversion into the user’s local currency.

This is an excellent example of when to use a custom escape. Inour top-level autohandler we can set:

$m->interp->set_escape => (
money => sub { sprintf("$%.2f",$_[0]) }

);

Perl Training Australia (http://perltraining.com.au/) 101

Chapter 13. Components in depth

This defines a newmoney escape. Given the following snippet of code:

Price (incl GST): <% $price * 1.1 |money %>

this would produce:

Price (incl GST): $55.00 (when $price = 50)
Price (incl GST): $1.35 (when $price = 1.23)

Whenever calling escapes other than the defaults, it’s necessary to separate them using commas. The
following would apply both themoney andh escapes, in that order:

<% $price |money,h %>

Modules vs components
Components are great for generating website specific thingslike navigation menus, headers, footers,
search boxes, and weather displays. In fact anything that generates HTML is a perfect use of
components.

However, there are a lot other things dynamic websites mightdo, that don’t immediately result in the
generation of HTML. For example connecting to and interacting with a database, generating
thumbnails for a photo gallery, sending email updates.

It can be tempting to put these tasks in components, to keep all of your code in one place, but is it
wise? An alternative is to put all non-website specific code into separate modules. These are a little
faster than Mason components, much easier to test, and can bereused outside of the web
environment.

For example, consider the situation where your website provides various status reports from
information stored in a database. The code for connecting tothe database, and collating the
information for the reports is not specifically website related. Having this code in a module will
make it much easier when your manager asks whether its possible for you to also send out a weekly
summary by email. If instead you had embedded the database interaction in your Mason
components, you’d have to duplicate parts of it (which meansyou’ll have twice as much code to
maintain), or move the code out to a module anyway.

A general rule of thumb is as follows:

If the code generates HTML, then use it as a component.

If the code does not generate HTML, but generates something that is only useful in a HTML context (for
example a list of available style-sheets, or something which loads extra javascript to handle specific
browser CSS bugs), then use it as a component.

For everything else, put it in a module.

Returning a value from a component
The vast majority of Mason components generate HTML (or other output), as such it is fairly rare
for a component to return a value. However, if you do want yourcomponent to return a value, or list
of values, you can add an explicitreturn statement.

return $result;

102 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

In these cases, thereturn statement is usually added to the<%init> block.

Using cookies with Mason
Just as in our CGI code, there are reasons we might want to giveusers cookies from our Mason code.
To do this, we useCGI::Cookie just as we have before:

<%init>
my %cookies = CGI::Cookie->fetch();

unless ($cookie{preferences})
my $cookie = CGI::Cookie->new(

-name => ’preferences’,
-value => \%prefs,

$r->headers_out->add(’Set-cookie’ => $cookie);
}
</%init>

Exercise

1. Add a cookie to one of your Mason components.

2. Use your CGI program from yesterday to check that you received the cookie.

Chapter summary

• Mason has two special global variables:$r and$m.

• %init blocks can be used to put initialisation code elsewhere thanthe top of a Mason component.

• %doc blocks can be used to store documentation.

• %once blocks allow you to perform an action once, when the component is first loaded, and then
cache the result for future accesses.

• Mason provides a number of useful escaping mechanisms.

• Creating modules is often a better alternative to components for many non-HTML specific actions.

Perl Training Australia (http://perltraining.com.au/) 103

Chapter 13. Components in depth

104 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

In this chapter...
We’ve already discoveredautohandlers, a powerful mechanism for manipulating content on our site.
Mason comes with another mechanism for manipulating content thatdoesn’texist on our site. This is
thedefault handler, or dhandler as they are conventionally called in Mason.

Thedhandler is invoked when Mason goes looking for content, but fails to find it. dhandlers are
important because they have a chance to produce content, generate a redirect, or simply display a
more useful404 - Not foundpage.

Finding dhandlers
In the same way that Mason will recursively search forautohandlers in the current directory and its
parents, the same applies when trying to find adhandler. A dhandler in the current directory takes
precedence over adhandler in the parent directory, and so on. If nodhandler can be found, then a
standard404 - Not found response will be generated.

Arguments
Inside adhandler, the original page requested can be found in$m->dhandler_arg. This is the full
path, but excludes any leading slash. For example, a requestfor /products/foo.html would have
$m->dhandler_arg returnproducts/foo.html.

We can use our original page to generate a redirect, query a database, conditionally include
components, perform a search, alert an operator, or do anything else that may be appropriate for the
data concerned.

Not Found
There’s a good chance that sooner or later you’ll want adhandler that really does generate aNot
Foundpage. To do this, we need to explicitly set the status using$r, the apache request object.

% use Apache::Constants qw(NOT_FOUND);
% $r->content_type(’text/html’);
% $r->status(NOT_FOUND);

It’s critically important that the status be set when generating aNot Foundpage. This informs search
engines and user agents that the content was not found. If thestatus is not set, then Mason will use a
status of200 Success, and search engines and other services would try indexing content that simply
doesn’t exist!

Any content in thedhandler is interpreted as text that should be sent to the browser.dhandlers will
inherit fromautohandlers in the same way as other components, so anyNot Foundpage will have
any navigation and other features provided to the rest of your site. This makes dhandlers a very
useful way of handling missing content, as they can provide auseful page that remains up-to-date
with the rest of the site.

Perl Training Australia (http://perltraining.com.au/) 105

Chapter 14. dhandler - The default handler

Generating redirects
One potential use fordhandlers is generating redirects. This may be done because pages have
moved, allow us to correct common mis-spellings, or handle users that haven’t logged in.

The Mason interpreter has a method calledredirect that allows current processing to be stopped,
and for the browser to be redirected to a new page. While this can be used in any component, it is of
particular use indhandlers, where redirecting to moved content is a common task.

% $m->redirect($new_url);

By default,redirect will generate a "moved temporarily" (302 Found) status. This indicates that the
user-agent should continue to use the original URL in the future. The redirect method can also be
called with a second argument to generate a "moved permanently" (301) status if desired:

% use Apache::Constants qw(MOVED);
% $m->redirect($new_url, MOVED);

An example dhandler
The following is a simplified version of the dhandler used on thePerl Training Australiawebsite. It
checks for pages that are known to have moved and generates a redirect. If the page is not one known
to have moved, then we instead generate aNot Foundstatus instead.

<%init>
use Apache::Constants qw(NOT_FOUND MOVED);
my $request = $m->dhandler_arg;

Some pages have moved permanently, and these are
itemised in the table below.

my %new_location_of = (
q{bookings.html} => q{/bookings/},
q{bookings/All.html} => q{/bookings/},
q{courses.html} => q{/courses/},
q{books.html} => q{/books/},

);

If our request is for a known-moved page, then
redirect immediately with a "moved permanently"
status. Calling redirect finishes our request.

if ($new_location_of{$request}) {
$m->redirect($new_location_of{$request}, MOVED);

}

Otherwise, our page is "Not Found". We explicitly
set our content type and status. Our message will
be automatically wrapped by our autohandler.

$r->content_type(’text/html’);
$r->status(NOT_FOUND);

<%init>
<p>
Sorry! The page <tt>/<% $request %></tt> could not be found
on this server. If you were expecting it to exist, then please
contact us and let us know.
</p>
</%init>

106 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

Exercises

1. Try visiting a non-existent page in your Mason area. Observe what message you receive.

2. Create awww/dhandler file that contains a simple "page not found" message. Now whathappens
when you try to navigate to a page that does not exist?

Virtual pages
Another common use of dhandlers is to generate content on thefly. For example, suppose part of
your website provides access to a mailing list archive.

You could write a program that records emails sent to the listand writes files appropriately, but that
would require a lot of work, and potentially generate a largenumber of files that require
management. If we want our files to contain links to follow-ups or other messages, then we may be
re-writing files many times.

A standard CGI approach would be to store the emails in some standard format (perhaps a database)
and then to provide the relevant information upon request. Requests may look like:

http://example.com/mailing-lists/archive.pl?year=2005&month=11&day=28

An alternative would be to use Mason’s dhandlers. Your dhandler may work a lot like your CGI
approach, but it comes with the added power of the Mason component’s hierarchy as well as
allowing you to use more meaningful URLs:

http://example.com/mailing-lists/archive/2005/Nov/28

Virtual quotations
A good use of adhandler is displaying information from databases, stored files, or other non-HTML
data. As a simple example, we’re going to see howdhandlers can be used to access quotations.

Thefortune Unix command displays a random and often amusing quotation.The fortune file format
consists of a series of quotations, each separated by a percentage sign on a line by itself:

Although the Perl Slogan is There’s More Than One Way to Do It, I
hesitate to make 10 ways to do something.

-- Larry Wall, 1990
%
And don’t tell me there isn’t one bit of difference between null and
space, because that’s exactly how much difference there is.

-- Larry Wall, 1990
%
It should be illegal to yell ’Y2K’ in a crowded economy.

-- Larry Wall, 1998

We’d like an application that allows us to visit a URL and receive a quotation:

/quotes/Larry_Wall/3

In this case we want the third quote by Larry Wall.

Perl Training Australia (http://perltraining.com.au/) 107

Chapter 14. dhandler - The default handler

Exercises

1. Thewww/quotes/dhandler file contains some basic code to find and parse these quotationfiles.
Modify it so that it extracts and displays the expected quote.

2. Create a new file in yourquotes directory and add a few quotations from your favourite film,
book, or even yourself. Verify that these quotes are now added to your site.

Caching pages
Sometimes creating our page can represent quite a bit of effort. Even with our simple quote example
we had to search through the file for the quote that we’re after. Unless our data needs to be
regenerated every time, we can cache it.

When caching the result of adhandler, we almost always want to key the cache to the requested
page. If we didn’t do this, then we’d serve the same (cached) page to anydhandler request.

Caching based upon the request URL is easy:

<%init>
return if $m->cache_self(

key => $m->dhandler_arg,
expires_in => ’10 mins’

);
</%init>

We talk more about caching in the next chapter.

cache_self only caches content , not the HTTP status. If your dhandler generates a redirect,
file-not-found, or any status other than a simple 200 OK then you should handle that before
invoking any caching code.

It’s a good idea not to even try to cache redirects (since they contain no content), and 404 Not
Found pages (as there is an infinite number of those), and only cache dhandler requests that
result in real content.

Exercise

1. Update yourwww/quotes/dhandler to cache quotes for 30 seconds. Verify (by looking at the
timestamp generated by the component) that quotes are beingcached successfully.

Declining the request
Sometimes yourdhandler may be called when it really would be more suitable for its parent or
grandparent handler to handle the request. Perhaps your image-albumdhandler has been called for
an image that does not exist. We’d like to decline the request, allowing a parentdhandler to generate
a Not Found, redirect, or other content as appropriate.

108 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

Declining a request is easy:

$m->decline();

A call to decline passes control up the component tree, untila dhandler is found which does not
decline the request. If no dhandler will accept the request,an error is generated.

Any output generated by a dhandler while processing the request is discarded upon the call to
decline. This simplifies the code for the dhandler as processing can start as normal until sufficient
conditions occur to generate the decline.

Chapter summary

• dhandlers are called when Mason looks for content but fails to find it.

• dhandlers can be used to generate Not Found pages, generate redirects and also create content
(virtual pages).

• Pages created by dhandlers can be cached for later accesses.

• dhandlers can decline requests, when this happens the next higher dhandler is called.

Perl Training Australia (http://perltraining.com.au/) 109

Chapter 14. dhandler - The default handler

110 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Caching

In this chapter...
Writing a successful website is not just about having something that looks good and is functional. It
needs to be scalable as well. Sometimes you’ll find some of your components have expensive
operations, such as downloading news items, or performing database queries, and having these run
for every request is slow and inefficient. Luckily, Mason comes with a rich set of caching utilities out
of the box.

General cache
Mason comes with a built-in cache mechanism. This allows us to store, retrieve, and expire values
with a minimum of fuss. Caching is done on aper-componentbasis, so you need not worry about
your keys conflicting with other keys on the system.

We can gain access to our cache by calling$m->cache. Let’s say that we have a component that’s
part of an administrator login process, and as part of that process we report the last time the
administrator logged in. Our code may look like this:

Get our last login, or ’never’ if we’ve never seen a
login before.

my $last_login = $m->cache->get(’last_login’) || "never";

Update our last login to now.
$m->cache->set(’last_login’, scalar localtime)

It’s also possible to cache more complex data structures. This is done by passing a reference to the
data structure as the second argument toset. For example, consider that we have a list of stock
prices. Generating these takes a while so it’s not somethingwe want to do for every request.

First we attempt to get our prices out of the cache; if we succeed, we’ll use those. If we don’t, we’ll
generate new ones and use those instead.

<%perl>
my $stock_ref = $m->cache->get(’stock’);

if (not $stock_ref) {

This assumes that get_stock_prices has been
written elsewhere, or imported from a module.

$stock_ref = get_stock_prices();
$m->cache->set(’stock’, $stock_ref);

}
</%perl>

<p>Current stock prices:</p>

% foreach my $symbol (keys %$stock_ref) {

<% "$symbol -- $stock_ref->{$symbol}" |h %>
% }

Perl Training Australia (http://perltraining.com.au/) 111

Chapter 15. Caching

Cache expiry
By default our cache keeps keys forever, however we may not always want that for all data. Some
data, such as stock prices, are only valid for a certain length of time. We can set keys to automatically
expire after a certain period of time by providing athird argument toset. For example:

Stock prices are really only good for about 20 minutes
$m->cache->set(’stock’, $stock_ref, ’20 minutes’);

We can also expire values explicitly by using theremove call:

$m->cache->remove(’stock’); # No stock values left

Exercises

1. The filewww/weather.html predicts the weather with a low degree of accuracy. Modify itso that
it caches the weather report for 30 seconds.

2. Check that your page now displays the cached weather when available, or generates and stores
the weather when it’s not available.

Caching pages
When creating a site, you may find that you want many of your pages to be rendered with Mason,
but they only change rarely once they have been rendered. These pages are ideal candidates for
Mason’s simple page-caching strategy.

It’s easy to mark that a page should be cached indefinitely:

<%init>
return if $m->cache_self();
</%init>

Thecache_self call has one of two effects. If the page has not already been cached, then
cache_self signals to Mason that a copy of the page should be saved after it’s been generated. In
this circumstance it returns a false value.

If cache_self already has a cached copy of the component, then it will return a true value, and send
the cached copy to the browser or calling component. By checking for this we are able to return
immediately without evaluating the rest of the component.

With no arguments,cache_self will cache our page indefinitely, until we explicitly clear it (more on
this later). However it’s also possible to cache our page fora specific period of time:

<%init>
return if $m->cache_self(expire_in => ’10 mins’);
</%init>

Of course, simple caches are great for simple things, but some things are more complex. Let’s take
an example of our component that displays the weather in a city. We don’t want to fetch weather
information for every request, and we need to maintain a separate cache for each city.

112 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Caching

<%args>
$city
</%args>

<%init>
return if $m->cache_self(expire_in => ’2 hours’, key => $city);
</%init>

By using thekey argument we are now able to tie our cache to a particular city,as well as ensuring
that we only refresh our cache every two hours.

Busy locks
Let’s pretend that it takes ten seconds to update our weatherreport for a city, and that our previously
cached copy has expired. What happens if a new request happens during this time? Since the cache is
expired then it’salsogoing to try and update the weather report. That’s going to happen toevery
requestuntil one (probably the first) finishes generating the new weather page and updates the cache.
If we’ve been receiving five hits per second, and it takes ten seconds to generate the report, then that
that’sfifty processes all trying to update the cache, when really we onlyneeded a single one doing
the work.

Clearly this situation is unacceptable, and Mason providesa solution. Abusy lockallows us to
specify that the first process to start updating the cache should be allowed to do so, but subsequent
requests should continue to use the old value while the new one is being calculated:

<%init>
return if $m->cache_self(

expire_in => ’2 hours’,
key => $city,
busy_lock => ’30 secs’,

);
</%init>

Here we have specified a busy lock of 30 seconds. When our data expires, thefirst time we try to
access itcache_self will return false, and at the same time extend the expiry timeof our existing
data by 30 seconds. This means that one component will work onrecomputing the value, while the
rest continue to use that old data. Once the new value has beencomputed, it’s used immediately.

The busy lock allows us to avoid needless recomputation, butalso provides a safety net that if a
particular process fails then another process will take over. If 30 seconds pass without an update,
then the cycle repeats.

The time on a busy lock should beat leastthe longest time expected to recompute a given page. If
too short a time is used then we may end up duplicating work, although too long a time can result in
delay updates when recoverable errors occur.

Chapter summary

• Mason comes with a rich caching system out of the box.

• Each component has its own cache for storing data.

• Whole pages can also be cached.

Perl Training Australia (http://perltraining.com.au/) 113

Chapter 15. Caching

• Busy locks can be placed on pages to allow only one process to update the page cache at once.

114 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. Filters

In this chapter...
Mason makes it easy for a component’s output to be inspected or changed before being sent to the
browser. There are a great many uses for such a facility, including removal or addition of HTML
comments, XHTML validation, HTML tidy-up, automatically filling in forms, censoring profanity,
and highlighting search results.

%filter blocks
To filter a component we can use a<%filter> block. Inside the filter block the output of our
component is stored inside$_. Our filter can inspect and change this content before it is passed to the
next higher component in our chain (or to the browser, if we’re in a top-level autohandler).

Component calls with content
Sometimes we don’t want to filter the result of an entire component. Instead, we’d simply like to take
a block of text and transform it in some way. The following example, adapted from the
HTML::Mason::Devel documentation, demonstrates how we can do this for creatingmulti-lingual
websites:

<&| /filters/i18n.mhtml &>
<en>Good-day</en>
<en-au>G’day</en>
<fr>Bonjour</fr>

</&>

Ouri18n.mhtml component could look like this:

% my $lang = $m->session->{language} || ’en’;
% my ($text) = ($m->content =~ m{<$lang>(.*?)</$lang>});

<% $text %>

This checks our session to see if a preferred language has been selected, and if not it uses a default of
English. It then simply finds the appropriate language blockand displays it.

It should be noted that this component is not complete, as it doesn’t deal with the situation where a
particular language is not available. In that situation we may wish to choose a default language (such
as English), and log an error that we don’t have a translationfor the text concerned.

Exercise

1. Write a filter block which changes all text to upper-case. Put this intowww/filters/uc.mhtml.

(Hint: This should only need to calluc on$m->content and then interpolate the result).

2. Use this filter block in one of your components.

Perl Training Australia (http://perltraining.com.au/) 115

Chapter 16. Filters

Pre-filling forms in Mason
Mason has a special type of block called a<%filter> block. A filter allows us to make alterations to
a component’s results, and can be used for a variety of purposes. By using filters in combination with
HTML::FillInForm, we can easily pre-fill our forms based on user submissions.

<%filter>
use HTML::FillInForm;
$_ = HTML::FillInForm->new->fill(

scalarref => \$_,
fdat => \%ARGS,

);
</%filter>

TheHTML::FillInForm module provides a number of useful options. Some of the more useful ones
are detailed below:

target

Thetarget option specifies that only the target form should be filled in.This is useful if your
page contains multiple HTML forms, of which our data is intended for only a single form.

$_ = HTML::FillInForm->new->fill(
scalarref => \$_,
fdat => \%ARGS,
target => "registration",

);

will only fill in fields inside a form named "registration":

<form name="registration"> ... </form>

fill_password

By default, password fields are also filled-in. To disable this, set thefill_password option to
false:

$_ = HTML::FillInForm->new->fill(
scalarref => \$_,
fdat => \%ARGS,
fill_password => 0,

);

Preventing password fields from being auto-filled removes the risk of the client’s browser or
proxy caching passwords and other sensitive information ondisk.

ignore_fields

Rather than removing fields from the%ARGS hash to avoid auto-population, we can also specify
them using theignore_fields to HTML::FillInForm:

$_ = HTML::FillInForm->new->fill(
scalarref => \$_,
fdat => \%ARGS,
ignore_fields => [’username’,’password’],

);

Exercises

1. Thewww/login.html page was used in the Sessions chapter. Upon submission it stores the given
information into a session.

116 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. Filters

Change this code so that it usesHTML::FillInForm to present to the user any information
already found in the session. Upon submission it should change the session information, and
redisplay the content in the form.

Chapter summary

• Filter blocks can be used to change our output before it is sent to the browser.

• Filters can be used to select various language options for internationalisation.

• We can useHTML::FillInForm to pre-fill forms in Mason, just as we have done for
HTML::Template forms.

Perl Training Australia (http://perltraining.com.au/) 117

Chapter 16. Filters

118 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Session management

In this chapter...
Just as sessions are fundamental to the smooth working of CGIprograms, they are essential to the
smooth working of Mason programs too. In this chapter we takeanother look at sessions and
consider how to use them with our Mason content.

Sessions in Mason
A default Mason installation does not come with any session capabilities, however they’re easy to
add in a relatively transparent way. Mason has a number of extensions available that live in the
MasonX:: namespace, and one of these isMasonX::Request::WithApacheSession.

TheMasonX::Request::WithApacheSession extension uses the popularApache::Session module
to provide session management that is effectively transparent to the end developer.

The extension adds two new methods are added to the Mason request object:

$m->delete_session; # Deletes the session from storage,
also removes any cookies from browser.

$m->session; # Provides access to the underlying
Apache::Session hash.

The$m->session call makes available the special session hash, which can contain any information
you like. This hash is automatically preserved by Mason, so anything placed in there by one request
will be available in the next.

You should keep in mind that thesessionsthemselves are temporary, they last only for the length of
the visitors browser session, or potentially even less. Anything placed in the session hash will
eventually be cleared. When a user creates an account at yourwebsite it’s perfectly reasonable to
create a session that remembers their login, but their registration details should be placed into a more
permanent store such as a database.

An example
Let’s pretend that our website has a number of different stylesheets available to it, allowing the user
a selection of look-and-feels. We’d like the user to be able to pick a style, and we’ll use a session to
remember this choice.

Firstly, let’s see a component that allows style selections.

% my @styles = qw(default bigtext colourblind);

<form method="post" action="style_select.html">
<p>Select a style:</p>

<select name="style">
% foreach my $style (@styles) {

<option value="<% $style %>"><% $style %></option>
% }
</select>

Perl Training Australia (http://perltraining.com.au/) 119

Chapter 17. Session management

<input type="submit" value="Go" />
</p>
</form>

This simply creates a drop-down list which allows our user toselect from one of three styles. Using
this list submits data tostyle_select.html, which may look like the following:

<%once>
my %allowed_styles = map { $_ => $_ } qw(default bigtext colourblind);
</%once>

<%args>
$style => "default"
</%args>

<%init>
my $session = $m->session; # Obtain our session hash.

Pick a style if allowed, or otherwise pick ’default’

$session->{style} = $allowed_style{$style} || ’default’;
</%init>

Now that we have a component that allows us to set our style, weneed our web-pages to make use of
it. Luckily, Mason’s autohandler means that implementing site-wide styles is a breeze:

<%init>
my $session = $m->session;
my $style = $session->{style} || "default";
</%init>

<html>
<head>
<link rel="stylesheet" type="text/css"

href="/styles/<% $style %>.css" />
</head>
<body>
% $m->call_next;
</body>
</html>

Now all of our pages will load the user-selected style-sheet. If no style-sheet has been selected, or if
the user is not accepting cookies, then thedefault stylesheet will be used.

In our example we have listed our allowed styles in two different components. This may cause
us headaches when we’re expanding our website in the future, as we may update the style list in
one location, but not the other.

A better solution would be to move the list of allowed styles into its own module, and then to use

that module. This means that the allowed style lists can be kept in a single location. It also
allows for the possibility of a dynamically generated style list.

120 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Session management

Exercises
Your workspace is already configured to useMasonX::WithApacheSession.

1. Thewww/login.html page allows the user to enter some basic information about themselves
(name and favourite colour). Write code that processes thisinformation and stores it into the
user’s session.

2. Thewww/profile.html page is intended to display the user’s profile. Update this code to read
the information from the user’s session and display it.

3. Our user may visit thewww/profile.html page without having an active profile in their session.
Determine a sensible course of action in this instance and implement it.

Session cleanup
Unlike CGI::Session which allows maximum expiry times, sessions made withApache::Session

will last forever. We can always clear our sessions explicitly:

$m->delete_session;

This will delete both the session from the store, and the cookie from the browser.

It’s common practice to keep a timestamp on sessions, allowing us to determine the last time a
session was accessed, and also ensuring that sessions are continually refreshed in the store. This
could be placed in a top-level autohandler:

$m->session->{timestamp} = time;

It’s commonplace for a periodically scheduled applicationto handle session clean-up. The most
common implementations involve testing session files for their last modified date, or checking the
last-modified timestamp on database rows.

Chapter summary

• Sessions are essential to keeping state between client requests.

• These are usually achieved by giving the user a session cookie.

• Mason has integration hooks withApache::Session.

• Apache::Session does not allow us to expire sessions as easily asCGI::Session did, however we
can achieve a similar effect by recording timestamps.

Perl Training Australia (http://perltraining.com.au/) 121

Chapter 17. Session management

122 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. Further Resources

Online Resources

• Embedding Perl in HTML with Mason - http://www.masonbook.com/

• Mason Headquarters - http://www.masonhq.com/

• Ovid’s CGI course - http://users.easystreet.com/ovid/cgi_course/

• PerlNet - The Australian Perl Portal - http://perl.net.au/

• The Perl Directory - http://perl.org/

• Comprehensive Perl Archive Network - http://search.cpan.org/

• Perl Mongers user groups - http://pm.org/

• PerlMonks - http://perlmonks.org/

• O’Reilly’s Perl.com - http://perl.com/

Books
Embedding Perl in HTML with Mason, Dave Rolsky Ken Williams, O’Reilly and Associates

Perl Best Practices, Damian Conway, O’Reilly and Associates

Programming Perl, Larry Wall et al, O’Reilly and Associates

Perl for System Administration, David N. Blank-Edelman, O’Reilly and Associates

The Perl Cookbook, Tom Christiansen and Nathan Torkington, O’Reilly and Associates

See Also

• Catalyst http://www.catalystframework.org/, a powerfuland elegant Perl MVC framework (like
Ruby on Rails, but for Perl!)

• Jifty http://jifty.org/view/HomePage, a web applicationframework with tools to support common
operations.

• Template Toolkit http://www.template-toolkit.org/, a fast, powerful and extensible template
processing system; fills many of the same needs asHTML::Mason.

Perl Training Australia (http://perltraining.com.au/) 123

Chapter 18. Further Resources

124 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

Introduction
In this chapter we will examine the configuration and setup ofHTML::Mason under Apache 1.3
using mod_perl. This covers the most commonly encountered Mason installation environment.

You can learn more about Mason configuration by using perldoc HTML::Mason::Admin, or by
reading the administrators manual online at http://www.masonhq.com/docs/manual/Admin.html.
This topic is also covered on pages 102 - 112 in the Mason book.

Quick Setup
Setting up Mason under Apache is a simple process. The simplest configuration involves adding the
following stanza to a mod_perl enabled Apache configurationfile:

PerlModule HTML::Mason::ApacheHandler

<Location />
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler

</Location>

This instructs Apache that all requests should be managed bytheHTML::Mason::ApacheHandler
module. This setup will work fine if everything in your directory is to be Mason-enabled, but that’s
rarely the case. The following configuration enables Mason for .html, and.txt files, and explicitly
denies access to internal components.

PerlModule HTML::Mason::ApacheHandler
PerlModule Apache::Constants

<LocationMatch "\.(html|txt)$">
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler

</Location>

<Locationmatch "\.(m(html|pl|txt)|dhandler|autohandler)$">
SetHandler perl-script
PerlInitHandler Apache::Constants::NOT_FOUND

</LocationMatch>

Mason with the lid off
On a more complex website, or on a server that serves many independent Mason-enabled sites, we
need to do a little more work to have our system running smoothly. In order to understand the
advanced configuration, we need to examine a few concepts first.

Perl Training Australia (http://perltraining.com.au/) 125

Appendix A. Mason Setup and Administration

The Mason interpreter
At Mason’s heart is theMason interpreter. At a very basic level the interpreter takes a component
and executes it, however it also handles caching of compiledcomponents on disk, the maintenance
of in-memory caches, and making sure that all output and errors go to the right places.

Most site-specific configuration for Mason is set or passed tothe Mason interpreter.

You can learn more about the Mason interpreter by reading perldoc HTML::Mason::Interp

and pages 98 - 100 of the Mason book.

The component root
As described in earlier chapters, all Mason components mustlive inside a directory tree. The top of
this directory tree is known asthe component root.

It is possible to specify multiple component roots to Mason,which will be searched in the order
specified. This allows for a directory of default or common components to be specified, and for new
components to be written or existing ones to be overridden ona per-file basis.

To learn more about Mason component roots read pages 84-86 and 203-204 in the Mason
book.

The data directory
Mason can make use of a directory in which to cache code and components, known as thedata
directory, or thedata_dir in many configuration files. Mason doesn’t require a data directory, but it
can speed up execution dramatically.

The data directory stores compiled Mason components, meaning that rather than having to interpret
components every time they are used, this only needs to be done once per component. By default,
Mason will check to see if the original component has been altered; if so, it will be recompiled and
stored into the data directory.

Mason wrappers
The greatest level of control over how requests are handled is by writing our own wrapper around the
Mason interpreter. When handling a request, Apache can be instructed to look inside a given
namespace for ahandler method. By writing our own package and placing ahandler inside it, we
can choose the code which is used to execute each request.

Here’s a simple wrapper which configures a Mason handler and passes requests directly to it:

126 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

package MyCompany::Mason;

use strict;
use HTML::Mason::ApacheHandler;

First we create an ApacheHandler that will manage
all requests. This happens when Apache first starts,
and is shared between all child processes.

my $ah = HTML::Mason::ApacheHandler->new(
comp_root => ’/path/to/comp_root’,
data_dir => ’/path/to/data_dir’,

);

Whenever we need to handle a request, we just pass it
to the handler created above.

sub handler {
my ($request) = @_;

return $ah->handle_request($request);
}

The wrapper above does not provide us with any extra functionality, but it does provide us with a
very useful starting point for more advanced handlers.

To use a handler as part of Apache, we load it using aPerlRequire statement:

PerlRequire /etc/apache/handler.pl

Once loaded, we can reference the package declared inside the handler as the target for our Mason
requests. Note the use ofMyCompany::Mason in the configuration below.

<LocationMatch "\.(html|css|txt)$">
SetHandler perl-script
PerlHandler MyCompany::Mason

</Location>

<Locationmatch "\.(m(html|pl|txt|css)|dhandler|autohandler)$">
SetHandler perl-script
PerlInitHandler Apache::Constants::NOT_FOUND

</LocationMatch>

One common configuration requirement is to have a number of virtual sites on a single server, all of
which use Mason. A wrapper script is perfect for this, as we can check to which site is associated
with a given request, and handle it appropriately.

package MyCompany::Mason;

use strict;
use HTML::Mason::ApacheHandler;
use Apache::Constants qw(DECLINED);

my %handler_for;

Walk through each site, and establish an ApacheHandler for each.
We use our site name to find the component root and establish
our data directories.

Perl Training Australia (http://perltraining.com.au/) 127

Appendix A. Mason Setup and Administration

foreach my $site (qw(www.perltraining.com.au www.example.com)) {
$handler_for{$site} = HTML::Mason::ApacheHandler->new(

comp_root => "/var/www/$site",
data_dir => "/var/cache/mason_data/$site"

);
}

Each request is passed to our handler, which finds the
associated site and fires off the appropriate ApacheHandler
created above.

sub handler {
my ($request) = @_;

Query our request object for the server hostname.
my $site = $request->server->server_hostname;

my $handler = $handler_for{$site};

Decline sites that we don’t know how to handle.
return DECLINED unless $handler;

return $handler->handle_request($request);

}

Using Mason through CGI scripts
Mason provides the best performance when running in conjunction with Apache and mod_perl,
however you may encounter situations where you can’t or don’t want to run Mason in a mod_perl
environment.

Mason has a special module calledHTML::Mason::CGIHandler that allows a regular Mason
environment to be provided by a CGI script. A basic CGIHandler program looks like this:

#!/usr/bin/perl -w
For this example, this script is ’mason_handler.cgi’

use strict;

This simply creates a new CGIHandler object and passes
the request to it. It’s a lot slower than running under
mod_perl, as we have to re-create the handler each time.

my $handler = HTML::Mason::CGIHandler->new(
comp_root => ’/path/to/comp_root’,
data_dir => ’/path/to/data_dir’,

);

$handler->handle_request;

For this program to work, it still requires a bit of help from Apache; however it does not require
mod_perl. The following configuration simply instructs Apache to pass all requests for.html files to
ourmason_handler.cgi program above.

<LocationMatch "\.html$">
Action html-mason /cgi-bin/mason_handler.cgi
AddHandler html-mason .html

</LocationMatch>

128 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

Using Mason in stand-alone scripts
Mason can be used independently of a CGI environment, or as part of a larger CGI application. To
do this, we need to create our ownMason Interpreterto execute our components. This is particularly
useful when building a testing framework for our components, as we can load and execute them
independently of a web-server, and can tightly control their input and examine their output.

#!/usr/bin/perl -w
use strict;
use HTML::Mason;

my $output_buffer;

my $interp = HTML::Mason::Interp->new(
comp_root => ’/path/to/comp_root’,
data_dir => ’/path/to/data_dir’,
out_method => \$output_buffer,

);

$interp->exec("my/component.html", @args_to_pass);

Our interpreter takes a number of arguments, but all of them are optional. Each argument is
described below:

comp_root

This specifies our component root, where our Mason components can be found. If not specified,
it defaults to the current working directory.

data_dir

This specifies Mason’s data directory, where compiled components are cached. If not specified
then caching is disabled, and components will be recompiledevery time.

out_method

This specifies where component output should be sent. If not specified then output will go to
STDOUT. If a reference to a scalar is provided then all output will bewritten to that scalar. This is
perfect for testing, as the scalar can be examined to ensure correct output is being generated.

Conclusion
The most common Mason environment is under Apache. Setup is asimple process with most
site-specific configuration being set in or passed to the Mason interpretor. We can control how
requests are handled by writing a wrapper around the interpreter.

Perl Training Australia (http://perltraining.com.au/) 129

Appendix A. Mason Setup and Administration

130 Perl Training Australia (http://perltraining.com.au/)

